PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 3 |

Tytuł artykułu

Phenolic acids in Crithmum maritimum L. (Apiaceae) after Tytanit fertilization

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Aerial parts and roots of Crithmum maritimum L. fertilized with Tytanit were investigated on the presence of phenolic acids (PhAs). Cinnamic and benzoic acid derivatives were quantified by use of validated RP-HPLC/DAD method. The amount of PhAs in fertilized plants (T) was higher than in control (C) plants (in the aerial parts: 2.16 mg/g and 1.28 mg/g dry weight, respectively, and in roots: 4.05 mg/g and 2.78 mg/g dry weight, respectively). The predominant PhA was the caffeic acid (83.2–94.2% of the total PhAs). After Tytanit treatment, amount of the caffeic acid rose from 667.41 μg/g in C to 1463.83 μg/g dry weight in the aerial parts of T, and in roots from 2251.74 μg/g in C to 3451.86 μg/g dry weight in T. Tytanit had also influence on the qualitative composition of PhAs; in extracts from aerial parts, some of PhAs (ferulic, chlorogenic, and syringic acids), absent in control, appeared after fertilization.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

86

Numer

3

Opis fizyczny

Article 3560 [11p.],fig.,ref.

Twórcy

autor
  • Chair and Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
  • Chair and Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
autor
  • Chair and Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
autor
  • Chair and Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland

Bibliografia

  • 1. Tutin TG. Crithmum L. In: Tutin TG, Heywood VH, Burges NA, Moore, DM, Valentine DH, Walters SM, et al., editors. Flora Europaea. Vol. 2. Cambridge: Cambridge University Press; 1968. p. 315–375.
  • 2. Davis PH, editor. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press; 1972.
  • 3. Maleš Ž, Žuntar I, Nigović B, Plazibat M, Vundać VB. Quantitative analysis of the polyphenols of the aerial parts of rock samphire – Crithmum maritimum L. Acta Pharmaceutica. 2003;53:139–144.
  • 4. Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science. 2005;168:889–899. https://doi.org/10.1016/j.plantsci.2004.11.002
  • 5. Ben Hamed K, Ben Youssef N, Ranieri A, Zarrouk M, Abdelly C. Changes in content and fatty acid profiles of total lipids and sufolipids in the halophyte Crithmum maritimum under salt stress. J Plant Physiol. 2005;162:599–602. https://doi.org/10.1016/j.jplph.2004.11.010
  • 6. Cunsolo F, Ruberto G, Amico V, Piattelli M. Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum. J Nat Prod. 1993;56:1598–1600. https://doi.org/10.1021/np50099a022
  • 7. Guil-Guerrero JL, Torija-Isasa ME, Gimenez-Martinez JJ. Nutritional composition of the samphire Crithmum maritimum L. Alimentaria. 1996;34(272):65–72.
  • 8. Romojaro A, Botella MA, Obón C, Pretel T. Nutritional and antioxidant properties of wild edible plants and their use as potential ingredients in the modern diet. International Journal of Food Science and Nutition. 2013;64(8):944–952. https://doi.org/10.3109/09637486.2013.821695
  • 9. Ruberto G, Biondi DM, Piattelli M. Composition of the volatile oil of Crithmum maritimum L. Flavour Fragr J. 1991;6:121–123. https://doi.org/10.1002/ffj.2730060205
  • 10. Jallali I, Zaouali Y, Missaouli I, Smeoui A, Abdelly C, Ksouri R. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoides L. Food Chem. 2014;145:1031–1038. https://doi.org/10.1016/j.foodchem.2013.09.034
  • 11. Ruberto G, Baratta MT, Deans SG, Dorman HJD. Antioxidant and antimicrobial. activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 2000;66:687– 693. https://doi.org/10.1055/s-2000-9773
  • 12. Tsoukatou M, Tsitsimpikou C, Vagias C, Roussis V. Chemical intra-Mediterranean variation and insecticidal activity of Crithmum maritimum. Zeitschrift für Naturforschung C. 2001;56:211–215. https://doi.org/10.1515/znc-2001-3-407
  • 13. Franke W. Vitamin C in sea fennel (Crithmum maritimum), an edible wild plant. Econ Bot. 1982;36(2):163–165. https://doi.org/10.1007/BF02858711
  • 14. Coiffard L, de Roeck Holtzhauer Y. Geographical and seasonal variations in protein content and free amino acids of Crithmum maritimum L. Apiaceae. Acta Botanica Gallica. 1995;142(5):405–414. https://doi.org/10.1080/12538078.1995.10515265
  • 15. Maleš Z, Plazibat M, Petlevski R. Thin-layer chromatographic analysis of amino acids of Crithmum maritimum L. Farmaceutski Glasnik. 2001;57(5):175–180.
  • 16. Guil-Guerrero JL, Rodriguez-Garcia I. Lipids classes, fatty acids and carotenes of the leaves of six edible wild plants. European Food Research and Technology. 1999;209:313– 316. https://doi.org/10.1007/s002170050501
  • 17. Burczyk J, Wierzchowska-Renke K, Głowniak K, Marek D. Geographic and environmental influences on the variation of essential oil and coumarins in Crithmum maritimum L. Journal of Herbs Spices and Medicinal Plants. 2002;9(4):305–311. https://doi.org/10.1300/J044v09n04_07
  • 18. Ruberto G, Amico V. Crithmumdiol: a new C-17-acetylene derivative from Crithmum maritimum. Planta Med. 1999; 65(7):681–682. https://doi.org/10.1055/s-2006-960853
  • 19. Baser KHC, Özek T, Demirci B, Saritas Y. Essential oil of Crithmum maritimum L. from Turkey. Journal of Essential Oil Research. 2000;12:424–426. https://doi.org/10.1080/10412905.2000.9699555
  • 20. Katsouri E, Demetzos C, Perdetzoglou D, Loukis A. An interpolation study of the essential oils of various parts of Crithmum maritimum L. growing in Amorgos island, Greece. Journal of Essential Oil Research. 2001;13:303–308. https://doi.org/10.1080/10412905.2001.9712220
  • 21. Özcan MM, Pedro LG, Figueiredo AC, Barroso JG. Constituents of the essential oil of sea fennel (Crithmum maritimum L.) growing wild in Turkey. J Med Food. 2006;9:128–130. https://doi.org/10.1089/jmf.2006.9.128
  • 22. Pistelli L, Noccioli C, D’Angiolillo F, Pistelli L. Composition of volatile in micropropagated and field grown aromatic plants from Tuscany Islands. Acta Biochim Pol. 2013;60:43–50.
  • 23. Jallali I, Megdiche W, M’Hamdi B, Oueslati S, Smaoui A, Abdelly C, et al. Changes in phenolic composition and antioxidant activities of the edible halophyte Crithmum maritimum L. with physiological stage and extraction method. Acta Physiol Plant. 2012;34:1451–1459. https://doi.org/10.1007/s11738-012-0943-9
  • 24. Siracusa L, Kulisič-Bilusič T, Politeo O, Krause I, Dejanovič B, Ruberto G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J Agric Food Chem. 2011;59:12453–12459. https://doi.org/10.1021/jf203096q
  • 25. Borkowski B, Biesiadecka A, Litwińska B. Comparison of virusostatic activity of caffeic, chlorogenic and rosmarinic acids. Herba Polonica. 1996;42:317–321.
  • 26. Mansouri A, Makris DP, Kefalas P. Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxyoxalate chemiluminescence-based assay: Structure-activity relationships. J Pharm Biomed Anal. 2005;39:22–26. https://doi.org/10.1016/j.jpba.2005.03.044
  • 27. Silva R, Carvalho IS. In vitro antioxidant activity, phenolic compounds and protective effect against DNA damage provided by leaves, stems and flowers of Portulaca oleracea (Purslane). Nat Prod Commun. 2014;9(1):45–50.
  • 28. Al Sukor N, van Camp J, Gonzales GB, Staljanssens D, Strujis K, Zotti MJ, et al. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. J Agric Food Chem. 2013;61:11832–11839. https://doi.org/10.1021/jf404641v
  • 29. Perez RM. Antiviral activity of compounds isolated from plants. Pharm Biol. 2003;41:107–157. https://doi.org/10.1076/phbi.41.2.107.14240
  • 30. Gomes CA, Girao da Cruz TG, Andrade JL, Milhazes N, Borges F, Marques MPM. Anticancer activity of phenolic acids of natural or synthetic origin: a structure–activity study. J Med Chem. 2003;46:5395–5401. https://doi.org/10.1021/jm030956v
  • 31. Indap MA, Radhika S, Motiwale L, Rao KVK. Anticancer activity of phenolic antioxidants against breast cancer cells and a spontaneous mammary tumor. Indian J Pharm Sci. 2006;68(4):470–471. https://doi.org/10.4103/0250-474X.27820
  • 32. Jin UH, Lee JY, Kang SK, Kim JK, Park WH, Kim JG, et al. A phenolic compound 5-caffeoylquinic acid (chlorogenic acid) is a new type and strong matrix metalloproteinase-9 inhibitor; isolation and identification from methanol extract of Euonymus alatus. Life Sciences. 2005;77:2760–2769. https://doi.org/10.1016/j.lfs.2005.02.028
  • 33. Tseng TH, Hsu JD, Lo MH, Chu CY, Chou FP, Huang CL, et al. Inhibitory effect of Hibiscus protocatechuic acid on tumor promotion in mouse skin. Cancer Lett. 1998;126:199–207. https://doi.org/10.1016/S0304-3835(98)00010-X
  • 34. Cichocki M, Dalek M, Szamalek M, Baer-Dubowska W. Naturally occurring phenolic acids modulate TPA-induced activation of EGFR, AP-1 and STATs in mouse epidermis. Nutr Cancer. 2014;66(2):308–314. https://doi.org/10.1080/01635581.2014.864419
  • 35. Harborne JB. Phenolics. In: Mann J, Davidson RS, Hobbs JB, Banthrope DV, Harborne JB, editors. Natural products. Their chemistry and biological significance. Harlow: Longman Scientific and Technical; 1994.
  • 36. Pais I. Criteria of essentiality, beneficiality and toxicity of chemical elements. Acta Aliment. 1992;21(2):145–152.
  • 37. Pais I. The biological importance of titanium. J Plant Nutr. 1983;6:3–131. https://doi.org/10.1080/01904168309363075
  • 38. Carvajal M, Alcaraz CF. Why titanium is a beneficial element for plants. J Plant Nutr. 1998;21(4):655–664. https://doi.org/10.1080/01904169809365433
  • 39. Tlustoš P, Cigler P, Hrubý M, Kužel S, Száková J, Balik J. The role of titanium in biomass production and its influence on essential elements’ contents in field growing crops. Plant Soil Environ. 2005;51(1):19–25.
  • 40. Nemec A, Kas V. The physiological significance of titanium in the plant organism. Biochem Z. 1923;140:583–590.
  • 41. Hrubý M, Cigler P, Kužel S. Contribution to understanding the mechanism of titanium action in plant. J Plant Nutr. 2002;25(3):577–598. https://doi.org/10.1081/PLN-120003383
  • 42. Radkowski A. Leaf greenness (SPAD) index in timothy-grass seed plantation at different doses of titanium foliar fertilization. Ecological Chemistry and Engineering A. 2013;20(2):167–174.
  • 43. Carvajal M, Alcaraz CF. Titanium as a beneficial element for Capsicum annuum L. plants. Recent research development. Phytochemistry. 1998;2:83–94.
  • 44. Dumon JC, Ernst WHO. Titanium in plants. J Plant Physiol. 1988;133:203–209. https://doi.org/10.1016/S0176-1617(88)80138-X
  • 45. Carvajal M, Martinez-Sanchez F, Alcaraz CF. Effect of titanium (IV) application on some enzymatic activities in several developing stages of red pepper plants. J Plant Nutr. 1994;17:234–253. https://doi.org/10.1080/01904169409364724
  • 46. Ochmian I, Skupień K, Grajkowski J. Effect of Tytanite and Biochikol 020 PC on phenolic composition of red raspberry (Rubus idaeus L.) cv. Polka fruit. Folia Universitatis Agriculturae Stetinensis. 2008;262:83–91.
  • 47. Kleiber T, Markiewicz B. Application of “Tytanit” in greenhouse tomato growing. Acta Scientiarum Polonorum. Hortorum Cultus. 2013;12(3):117–126.
  • 48. Wierzchowska-Renke K, Ochocka JR, Głowniak K, Marek D, Janczyk J. The effect of metal ions action on volatile oil content and composition in medicinal plants from Umbelliferae family. Herba Polonica. 2002;48(4):233–241.
  • 49. Council of Europe. European Pharmacopoeia. 6th ed. Strasbourg: Council of Europe; 2007.
  • 50. Ibrahim RK, Towers GH. Identification by chromatography of plant phenolic acids. Arch Biochem Biophys. 1960;87:125–127. https://doi.org/10.1016/0003-9861(60)90132-6
  • 51. Schmidtlein H, Herrmann K. Quantitative analysis for phenolic acids by thin-layer chromatography. J Chromatogr. 1975;115:123–128. https://doi.org/10.1016/S0021-9673(00)89024-X
  • 52. Bartnik M, Głowniak K, Dul R. Use of two-dimensional TLC to identify of phenolic acids in the foliage and fruit of Peucedanum tauricum Bieb. Journal of Planar Chromatogaphy. 2003;16:206–210. https://doi.org/10.1556/JPC.16.2003.3.7
  • 53. Ermer J, MbB Miller JH. Method validation in pharmaceutical analysis. A guide to best practice. Weinheim: Wiley-VCH; 2005. https://doi.org/10.1002/3527604685
  • 54. ICH harmonised tripartite guideline. Validation of analytical procedures: text and methodology, Q2 (R1) [Internet]. 2005 [cited 2017 Sep 25]. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/ Q2_R1/Step4/Q2_R1__Guideline.pdf
  • 55. Meot-Duros L, Magné C. Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem. 2009;47:37–41. https://doi.org/10.1016/j.plaphy.2008.09.006
  • 56. Waksmundzka-Hajnos M, Oniszczuk A, Szewczyk K, Wianowska D. Effect of sample preparation methods on the HPLC quantitation of some phenolic acids in plant materials. Acta Chromatogr. 2007;19:227–237.
  • 57. Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18:2328–2375. https://doi.org/10.3390/molecules18022328
  • 58. Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, et al. Influence of biological, environmental and technical factors on phenolic and antioxidant activities of Tunisian halophytes. C R Biol. 2008;331:865–873. https://doi.org/10.1016/j.crvi.2008.07.024
  • 59. Cosmulescu S, Trandafir I. Seasonal variation of total phenols in leaves of walnut (Juglans regia L.). J Med Plant Res. 2010;5:4938–4942.
  • 60. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7(10):1306–1320. https://doi.org/10.4161/psb.21663
  • 61. Kužel S, Hrubý M, Cigler P, Tlustoš P, Va PN. Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biol Trace Elem Res. 2003;91:179–189. https://doi.org/10.1385/BTER:91:2:179
  • 62. Carvajal M, Alcaraz CF. Effect of Ti(IV) on Fe activity in Capsicum annuum. Phytochemistry. 1995;39(5):977–980. https://doi.org/10.1016/0031-9422(95)00095-O

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4b37c820-5477-4d60-ba24-390c9e50759b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.