PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 6 |

Tytuł artykułu

Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Several volatile organic compounds (VOCs) have been reported as having a communication role between plants and also between plants and animals. We aimed to test whether methanol, a short-chain oxygenated VOC, could also have a signalling role between plants. We monitored photosynthetic performance and VOC exchange rates of Quercus ilex L. saplings before and after two different treatments: (a) clipping of some leaves to simulate an attack by herbivores and (b) fumigation with gaseous methanol for 5 h to simulate the amount of methanol a plant could receive from surrounding plants if those had been already attacked by herbivores. The clipping treatment enhanced the photosynthetic rates, the chlorophyll a to b ratio and the carotenoid to chlorophyll ratio of nonclipped leaves, suggesting an activation of plant protective metabolism. Also, a small but interesting systemic (in nonclipped leaves) increase in methanol emission rates was observed, which agrees with the possibility that methanol may act as a signalling cue. The methanol fumigation treatment induced an increase in the actual photochemical efficiency of PSII and also in the carotenoid to chlorophyll ratio. Methanol fumigation also promoted a 14% increase in the monoterpene emission rate, 1 day after the treatment, a similar response to the ones induced by other signalling VOCs. The enhanced monoterpene emissions could add to the blend of VOCs emitted after stress and be part of further signalling pathways, thus forwarding the message started by methanol. This study suggests that clipping and methanol fumigation at natural concentrations elicit significant neighbour plant physiological responses and further BVOC emissions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

6

Opis fizyczny

p.2413-2422,fig.,ref.

Twórcy

autor
  • Unitat d'Ecologia Global CREAF-CEAB-CSIC, Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Universitat Autonoma de Barcelona, Edifici C, Bellaterra, 08193 Barcelona, Catalunya, Spain
autor
  • Unitat d'Ecologia Global CREAF-CEAB-CSIC, Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Universitat Autonoma de Barcelona, Edifici C, Bellaterra, 08193 Barcelona, Catalunya, Spain
autor
  • Unitat d'Ecologia Global CREAF-CEAB-CSIC, Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Universitat Autonoma de Barcelona, Edifici C, Bellaterra, 08193 Barcelona, Catalunya, Spain
autor
  • Unitat d'Ecologia Global CREAF-CEAB-CSIC, Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Universitat Autonoma de Barcelona, Edifici C, Bellaterra, 08193 Barcelona, Catalunya, Spain

Bibliografia

  • Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310
  • Arimura G, Garms S, Maffei M, Bossi S, Schulze B, Leitner M, Mithöfer A, Boland W (2008) Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227:453–464
  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101
  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: ‘‘Talking trees’’ in the genomics era. Science 311:812–815
  • Blanch JS, Peñuelas J, Llusià J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 131:211–225
  • Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME (2010) Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta 232:719–729
  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552
  • de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transferreaction mass spectrometry. Mass Spectrom Rev 26:223–257
  • Dewez D, Dautremepuits C, Jeandet P, Vernet G, Popovic R (2003) Effects of methanol on photosynthetic processes and growth of Lemna gibba. Photochem Photobiol 78:420–424
  • Downie A, Miyazaki S, Bohnert H, John P, Coleman J, Parry M, Haslam R (2004) Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry 65:2305–2316
  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785
  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974
  • Farag MA, Pare PW (2002) C-6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554
  • Faver KL, Gerik TJ (1996) Foliar-applied methanol effects on cotton (Gossypium hirsutum L.) gas exchange and growth. Field Crop Res 47:227–234
  • Filella I, Peñuelas J, Llusià J (2006) Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytol 169:135–144
  • Filella I, Peñuelas J, Seco R (2009) Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability. Acta Physiol Plant 31:311–318
  • Frost CJ, Appel M, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498
  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–733
  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
  • Gershenzon J (2007) Plant volatiles carry both public and private messages. Proc Natl Acad Sci USA 104:5257–5258
  • Godard K, White R, Bohlmann J (2008) Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849
  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210
  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals—‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34
  • Harley P, Greenberg J, Niinemets U, Guenther A (2007) Environmental controls over methanol emission from leaves. Biogeosciences 4:1083–1099
  • Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817
  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472
  • Holzinger R, Lee A, Paw KT, Goldstein AH (2005) Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos Chem Phys 5:67–75
  • Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets U, Walter A, Wildt J (2007) Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793
  • Jacob DJ, Field BD, Li QB, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res 110:D08303
  • Karl T, Guenther A, Lindinger C, Jordan A, Fall R, Lindinger W (2001) Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer. J Geophys Res 106:24157–24167
  • Kavouras IG, Mihalopoulos N, Stephanou EG (1998) Formation of atmospheric particles from organic acids produced by forests. Nature 395:683–686
  • Keenan T, Niinemets U, Sabate S, Gracia C, Peñuelas J (2009) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmos Chem Phys 9:4053–4076
  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88
  • Kessler A, Baldwin IT (2001) Defensive function of herbivoreinduced plant volatile emissions in nature. Science 291:2141–2144
  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628
  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Plant Cell Membranes. Academic Press, London, pp 350–382
  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of protontransfer-reaction mass spectrometry (PTR–MS)—medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241
  • Llusià J, Peñuelas J (2001) Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Exp Appl Acarol 25:65–77
  • Llusià J, Peñuelas J, Sardans J, Owen SM, Niinemets U¨ (2010) Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit more than natives. Global Ecol Biogeogr 19:863–874
  • Loreto F, Tricoli D, Centritto M, Alvino A, Delfine S (1999) Shortterm effects of fumigation with gaseous methanol on photosynthesis in horticultural plants. J Am Soc Hortic Sci 124:377–380
  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367
  • Madhaiyan M, Poonguzhali S, Sundaram SP, Sa T (2006) A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environ Exp Bot 57:168–176
  • Mantyla E, Alessio GA, Blande JD, Heijari J, Holopainen JK, Laaksonen T, Piirtola P, Klemola T (2008) From plants to birds: higher avian predation rates in trees responding to insect herbivory. Plos One 3:e2832
  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280
  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168
  • Mitra S, Baldwin IT (2008) Independently silencing two photosynthetic proteins in Nicotiana attenuata has different effects on herbivore resistance. Plant Physiol 148:1128–1138
  • Mumm R, Posthumus MA, Dicke M (2008) Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Environ 31:575–585
  • Park S, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116
  • Peiffer M, Felton GW (2009) Do caterpillars secrete ‘‘Oral Secretions’’? J Chem Ecol 35:326–335
  • Peñuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156
  • Peñuelas J, Llusià J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155:227–237
  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109
  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144
  • Peñuelas J, Baret F, Filella I (1995a) Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 31:221–230
  • Peñuelas J, Llusià J, Estiarte M (1995b) Terpenoids—a plant language. Trends Ecol Evol 10:289
  • Peñuelas J, Filella I, Stefanescu C, Llusià J (2005a) Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol 167:851–857
  • Peñuelas J, Llusià J, Asensio D, Munné-Bosch S (2005b) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ 28:278–286
  • Peñuelas J, Llusià J, Filella I (2007) Methyl salicylate fumigation increases monoterpene emission rates. Biol Plant 51:372–376
  • Peñuelas J, Filella I, Seco R, Llusià J (2009) Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol Plant 53:351–354
  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243
  • Pierik R, Visser EJW, De Kroon H, Voesenek LACJ (2003) Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ 26:1229–1234
  • Pinto DM, Blande JD, Nykanen R, Dong W, Nerg A, Holopainen JK (2007a) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694
  • Pinto DM, Nerg A, Holopainen JK (2007b) The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. J Chem Ecol 33:2218–2228
  • Raffa KF, Berryman AA, Simasko J, Teal W, Wong BL (1985) Effects of grand fir monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera, Scolytidae), and its symbiotic fungus. Environ Entomol 14:552–556
  • Rajala A, Karkkainen J, Peltonen J, Peltonen-Sainio P (1998) Foliar applications of alcohols failed to enhance growth and yield of C-3 crops. Ind Crop Prod 7:129–137
  • Ramirez I, Dorta F, Espinoza V, Jimenez E, Mercado A, Peña-Cortes H (2006) Effects of foliar and root applications of methanol on the growth of Arabidopsis, tobacco, and tomato plants. J Plant Growth Regul 25:30–44
  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-Hexen-1-ol. J Chem Ecol 31:2217–2222
  • Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real-time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138:123–133
  • Schmidt L, Schurr U, Roese USR (2009) Local and systemic effects of two herbivores with different feeding mechanisms on primary metabolism of cotton leaves. Plant Cell Environ 32:893–903
  • Seco R, Peñuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499
  • Seco R, Peñuelas J, Filella I (2008) Formaldehyde emission and uptake by Mediterranean trees Quercus ilex and Pinus halepensis. Atmos Environ 42:7907–7914
  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769
  • Singsaas EL, Sharkey TD (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ 21:1181–1188
  • Staudt M, Lhoutellier L (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol 27:1433–1440
  • Syvertsen JP (1994) Partial shoot removal increases net CO₂ assimilation and alters water relations of citrus seedlings. Tree Physiol 14:497–508
  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26
  • Trumble JT, Kolodnyhirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:93–119
  • Velikova V, Pinelli P, Pasqualini S, Reale L, Ferranti F, Loreto F (2005) Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol 166:419–426
  • von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant–herbivore interactions. J Plant Growth Regul 26:201–209
  • von Dahl CC, Havecker M, Schlogl R, Baldwin IT (2006) Caterpillarelicited methanol emission: a new signal in plant–herbivore interactions? Plant J 46:948–960
  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851
  • Young A, Britton G (1990) Carotenoids and stress. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley, New York, pp 87–112
  • Zangerl AR, Hamilton JG, Miller TJ, Crofts AR, Oxborough K, Berenbaum MR, de Lucia EH (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. Proc Natl Acad Sci USA 99:1088–1091
  • Zhao J, Zhang RY (2004) Proton transfer reaction rate constants between hydronium ion (H3O(+)) and volatile organic compounds. Atmos Environ 38:2177–2185

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4b35f80b-7a0c-4284-8faf-88250c62714a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.