PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |

Tytuł artykułu

Artificial neural network modeling of dissolved oxygen concentrations in a Turkish Watershed

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents the application of artificial neural networks (ANNs) and regression analysis (RA) for predicting dissolved oxygen concentrations (DO, mg/L) from water quality (WQ) indicators, namely stream water pH and temperature (t, °C). For this purpose, three diverse models are used in our analysis, considering the functional relationship between in situ-measured WQ indicators and DO concentration. The WQ data are semimonthly obtained from nine monitoring sites in the Harsit Stream watershed in the Eastern Black Sea Basin of Turkey, from March 2009 to February 2010. As a result of model prediction, this study proposes a suitable ANN model, including two independent variables to efficiently predict DO concentration from WQ data, with the root mean square error of 0.9442 mg/L and mean absolute error of 0.6965 mg/L. The proposed model predicts the DO concentration better than the RA and the other two ANN models. The results may reduce the time and cost necessary to determine DO concentrations.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

4

Opis fizyczny

p.1507-1515,fig.,ref.

Twórcy

autor
  • Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
autor
  • Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey

Bibliografia

  • 1. COX B.A. A review of dissolved oxygen modelling techniques for lowland rivers. Sci Total Environ., 314, 303, 2003.
  • 2. APHA. Standard methods for the examination of water and wastewater. 20th ed., American Public Health Association, Washington, DC, 1998.
  • 3. WILCOCK R.J. Agricultural runoff: a source of water pollution in New Zealand? New Zeal Agr Sci., 20, 98,1986.
  • 4. WANG H., HONDZO M., XU C., POOLE V., SPACIE A. Dissolved oxygen dynamics of streams draining an urbanized and an agricultural catchment. Ecol Model., 160, 145, 2003.
  • 5. WETZEL R.G., LIKENS G. Limnological Analysis. 2nd ed. Springer, New York, p. 391,1991.
  • 6. MUANGKAEW S., MCKELVIE I.D., GRACE M.R., RAYANAKORN M., GRUDPAN K., JAKMUNEE J., NACAPRICHA D. A reverse-flow injection analysis method for the determination of dissolved oxygen in fresh and marine waters. Talanta 58, 1285, 2002.
  • 7. METCALF, EDDY. Wastewater Engineering: Treatment and Reuse. 4th ed. McGraw-Hill, New York, p. 54, 2003.
  • 8. COLT J. Computation of dissolved gas concentrations in water as functions of temperature, salinity, and pressure. American Fisheries Society, Bethesda, Md, 1984.
  • 9. LOPERFIDO J.V., JUST C.L., SCHNOOR J.L. High- frequency diel dissolved oxygen stream data modeled for variable temperature and scale. J Environ Eng-ASCE, 135, 1250, 2009.
  • 10. HECHT N.R. In: Proceedings of the International Joint Conference on Neural Networks. IEEE Press, Washington 593-605, 1989.
  • 11. SWINGLER K. Applying neural networks: A practical guide. Academic Press, London, 21-39,1996.
  • 12. SIVRI N., KILIC N., UCAN O.N. Estimation of stream temperature in Firtina Creek (Rize-Turkiye) using artificial neural network model. J Environ Biol., 28, 67, 2007.
  • 13. MOZEJKO J., GNIOT R. Application of neural networks for the prediction of total phosphorus concentrations in surface waters. Pol J Environ Stud., 17, 363, 2008.
  • 14. DOGAN E., SENGORUR В., KOKLU R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage., 90, 1229, 2009.
  • 15. AMIRI B.J., NAKANE K. Comparative prediction of stream water total nitrogen from land cover using artificial neural network and multiple linear regression approaches. Pol J Environ Stud., 18, 151, 2009.
  • 16. CHEN D.J., LU J., SHEN Y.N. Artificial neural network modelling of concentrations of nitrogen, phosphorus and dissolved oxygen in a non-point source polluted river in Zhejiang Province, southeast China. Hydrol Process., 24, 290, 2010.
  • 17. BAYRAM A., KANKAL M., TAYFUR G., ONSOY H. Prediction of suspended sediment concentration from water quality. Neural Comput Appl., 24, 1079, 2014.
  • 18. SENGORUR В., DOGAN E., KOKLU R., SAMANDAR A. Dissolved oxygen estimation using artificial neural network for water quality control. Fresen Environ Bull., 15, 1064, 2006.
  • 19. BASANT N., GUPTA S., MALIK A., SINGH K.P. Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water - A case study. Chemometr Intell Lab., 104, 172, 2010.
  • 20. AY M., KISI О. Modeling of dissolved oxygen concentrations using different neural network techniques in Foundation Creek, El Paso County, Colorado. J Environ Eng-ASCE, 138, 654, 2012.
  • 21. WEN X., FANG J., DIAO M., ZHANG C. Artificial neural network modeling dissolved oxygen in the Heihe River, Northwestern China. Environ Monit Assess., 185, 4361, 2013.
  • 22. ANTANASIJEVIC D., POCAJT V., POVRENOVIC D., PERIC-GRUJIC A., RISTIC M. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environ Sci Pollut Res., 20, 9006, 2013.
  • 23. TASGETIREN M.F. Artificial neural networks: Multilayer. http://elektroteknoloji.com/Elektrik_Elektronik/PLC_ Sistemleri/Yapay_Sinir_Aglar_Cok_Katmanli.html. Accessed 25 December 2013.
  • 24. FAUSETT L. Fundamentals of neural networks. Prentice- Hall, NJ, p.470, 1994.
  • 25. OZSAHIN T.S., BIRINCIA., CAKIROGLU A.O. Prediction of contact lengths between an elastic layer and two elastic circular punches with neural networks. Struct Eng Mech., 18, 441, 2004.
  • 26. HALICI U. Artificial neural network, Lecture notes. Middle East Technical University, Ankara, Turkey. http://visionl. eee.metu.edu.tr./~halici/543LectureNotes/543index.html. Accessed 25 December 2013.
  • 27. BAYRAM A., ONSOY H., BULUT V.N., TUFEKCI M. Dissolved oxygen levels in the stream Harşit (Turkey). 9th International Congress on Advances in Civil Engineering, Trabzon, Turkey, 2010 [Full text in CD: ACE2010- HYD-041].
  • 28. BAYRAM A. A study on seasonal variation of the stream Harsit water quality and estimation of the suspended sediment concentration using artificial neural networks. PhD Thesis, Karadeniz Technical University, Trabzon, Turkey, 2011 [in Turkish with English abstract].
  • 29. BAYRAM A., ONSOY H., BULUT V.N., BAYRAK A. Effects of hydraulics structures on dissolved oxygen concentration: A case study from the stream Harsit, Eastern Black Sea Basin, Turkey. 2nd International Balkans Conference on Challenges of Civil Engineering, Tirana, Albania, 2013 [Full text in CD: 7-Hydraulic Engineering].
  • 30. KANG J.Y., SONG J.H. (1998) Neural network applications in determining the fatigue crack opening load. Int J Fatigue, 20, 57,1998.
  • 31. TAYFUR G. Soft computing in water resources engineering: artificial neural networks, fuzzy logic and genetic algorithms. WIT Press, Southamton, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4a27cd77-f49c-409d-b9e6-f340a34fe59a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.