PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 05 |

Tytuł artykułu

Effect and mechanism of endophytic bacteria on growth and secondary metabolite synthesis in Salvia miltiorrhiza hairy roots

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our study found that except Novosphingobium resinovorum (B5) Salvia miltiorrhiza root endophytic bacteria Pseudomonas brassicacearum sub sp. neoaurantiaca (B1), Rhizobium radiobacter (B2), Pseudomonas thivervalensis (B3), Pseudomonas frederiksbergensis (B4) significantly improved the activity of key enzymes 3-hydroxy-3-methyglutary1-CoA reductase and 1-deoxy-D-xylulose-5-phosphate synthase in the biosynthetic pathway of tanshinones. Specifically, HMGR activity with B1 treatment increased 2.1-fold that of control, 1-deoxy-Dxylulose-5-phosphate synthase activity with B2 treatment increased 5.0-fold that of control, which caused a significant increase in tanshinone content in the hairy roots. The dihydrotanshinone I and cryptotanshinone content under B1 treatment increased 19.2-fold and 11.3-fold, respectively, and total tanshinone content increased 3.7-fold that of control. The five endophytic bacteria B1, B2, B3, B4 and B5 all significantly decreased phenylalanine ammonialyase and tyrosine aminotransferase activity in hairy roots, of which, B3 treatment decreased phenylalanine ammonialyase activity by 46.2 %, and B2 treatment decreased tyrosine aminotransferase activity by 44.7 % compared with the control. Each of the five endophytic bacteria decomposed rosmarinic acid and salvianolic acid B, which caused a significant decrease in rosmarinic acid and salvianolic acid B content in hairy roots, with B2 treatment decreasing rosmarinic acid and salvianolic acid B content by 94.5 and 89.0 %, respectively, compared with the control. The five endophytic bacteria also inhibited the growth of S. miltiorrhiza hairy roots, of which, B2 and B4 treatment decreased hairy root biomass by 55.2 and 51.3 %, respectively, compared with the control, while hairy roots promoted the growth of B4 and B5 and inhibited the growth of B1 and B3.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

05

Opis fizyczny

p.1095-1105,fig.,ref.

Twórcy

autor
  • College of Life Scienca, Northwest AandF University, Yangling 712100 Shaanxi, People's Republic of China
  • Bureau of Traditional Chinese Medicine's Development, Tongchuan 727031, Shaanxi, People's Republic of China
autor
  • College of Life Scienca, Northwest AandF University, Yangling 712100 Shaanxi, People's Republic of China
autor
  • Foreign Affairs Office, Tongchuan 727031, Shaanxi, People's Republic of China
autor
  • College of Life Scienca, Northwest AandF University, Yangling 712100 Shaanxi, People's Republic of China
autor
  • College of Resources and Environment, Northwest AandF University, Yangling 712100 Shaanxi, People's Republic of China
autor
  • College of Life Scienca, Northwest AandF University, Yangling 712100 Shaanxi, People's Republic of China

Bibliografia

  • Chen H, Chen F, Zhang YL, Song JY (1999a) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotech 22(3):133–138. doi:10.1038/sj.jim.2900624
  • Chen H, Chen F, Zhang YL, Song JY (1999b) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotechnol 22(3):133–138. doi:10.1038/sj.jim.2900624
  • Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116(5): 865–869
  • De-Eknamkul W, Ellis BE (1987) Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 26(7):1941–1946. doi:10.1016/S0031-9422(00)81734-3
  • Duan J-L, Li X-J, Gao J-M, Wang D-S, Yan Y, Xue Q-H (2013) Isolation and identification of endophytic bacteria from root tissues of Salvia miltiorrhiza Bge. and determination of their bioactivities. Ann Microbiol: 1–12. doi:10.1007/s13213-013-0614-0
  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4(4):220–226
  • Ge X, Wu J (2005) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168(2):487–491. doi:10.1016/j.plantsci.2004.09.012
  • Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19(3):175–199. doi:10.1016/s0734-9750(01)00054-4
  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346. doi:10.1016/j.pbi.2006.03.008
  • Kumar V, Rajauria G, Sahai V, Bisaria VS (2012) Culture filtrate of root endophytic fungus Piriformospora indica promotes the growth and lignan production of Linum album hairy root cultures. Process Biochem 47(6):901–907. doi:10.1016/j.procbio.2011.06.012
  • Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6866–6871. doi:10.1073/pnas.1031755100
  • Liang ZS, Yang DF, Liang X, Zhang YJ, Liu Y, Liu FH (2012) Roles of reactive oxygen species in methyl jasmonate and nitric oxide-induced tanshinone production in Salvia miltiorrhiza hairy roots. Plant Cell Rep 31(5):873–883. doi:10.1007/s00299-011-1208-6
  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789. doi:10.1042/0300-5127:0280785
  • Liu G (2009) Effects of elicitor-induced expression of tyrosine aminotransferase gene on the synthesis of rosmarinic acid in Coleus Blumei. Master’s thesis, ShanDong Agricultural University, Taian Liu H, Wang X, Wang D, Zou Z, Liang Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33(1):84–88. doi:10.1016/j.indcrop.2010.09.006
  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69–72. doi:10.1016/j.ab.2004.12.001
  • Petersen M (1997) Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45(6):1165–1172. doi:10.1016/S0031-9422(97)00135-0
  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62(2):121–125. doi:10.1016/S0031-9422(02)00513-7
  • Petersen M, Häusler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189(1):10–14. doi:10.1007/bf00201337
  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70(15–16):1663–1679. doi:10.1016/j.phytochem.2009.05.010
  • Querol J, Besumbes O, Maria Lois L, Boronat A, Imperial S (2001) A fluorometric assay for the determination of 1-deoxy–xylulose 5-phosphate synthase activity. Anal Biochem 296(1):101–105. doi:10.1006/abio2001.5234
  • Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Plant Biol 10(10):151–155
  • Toroser D, Huber SC (1998) 3-Hydroxy-3-methylglutaryl-coenzyme a reductase kinase and sucrose–phosphate synthase kinase Activities in Cauliflower Florets: Ca²⁺ dependence and substrate specificities. Arch Biochem Biophys 355(2):291–300. doi:10. 1006/abbi 1998.0740
  • Wang JW, Xia ZH, Tan RX (2002) Elicitation on artemisinin biosynthesis in Artemisia annua hairy roots by the oligosaccharide extract from the endophytic Colletotrichum sp B501. Acta Bot Sin 44(10):1233–1238
  • Wang XH, Morris-Natschke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27(1):133–148. doi:10.1002/med.20077
  • Wu J-Y, Ng J, Shi M, Wu S-J (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root–bacteria coculture process. Appl Microbiol Biotechnol 77(3):543–550. doi:10.1007/s00253-007-1192-5
  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137(1):1–9. doi:10.1111/j.1399-3054.2009.01257.x
  • Yan Q, Hu Z, Tan R, Wu J (2005) Efficient production and recovery of diterpenoid tanshinones in hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119(4):416–424. doi:10.1016/j.jbiotec.2005.04.020
  • Yang DF, Sheng DF, Duan QM, Liang X, Liang ZS, Liu Y (2012) PEG and ABA trigger the burst of reactive oxygen species to increase tanshinone production in Salvia miltiorrhiza hairy roots. J Plant Growth Regul 31(4):579–587. doi:10.1007/s00344-012-9268-6
  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333. doi:10.1016/j.biotechadv.2005.01.003
  • Zhou L (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45(12): 1345–1359. doi:10.1177/0091270005282630

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4917d164-dd4f-43bf-9483-1bd229051208
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.