PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 58 | 1 |

Tytuł artykułu

Methyl jasmonate elicitation affects expression of genes involved in biosynthesis and turnover of 2-phenylethylamine in maize seedlings

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of the study was to assess the influence of methyl jasmonate (MJ) vapors on accumulation of 2-phenylethylamine (PEA), phenylacetic acid (PAA) and 2-phenylethanol (PE) in leaves and roots of maize (Zea mays L. subsp. mays, saccharata group, cv. Złota Karłowa) seedlings. Furthermore, we analyzed the expression patterns of eight genes (ADH1, ADH2, AO2, CAO, PDC1, PDC2, PTA and LOX, encoding alcohol dehydrogenase 1 and 2, primary amine oxidase, aldehyde oxidase 2, phenylalanine decarboxylase 1 and 2, phenylalanine (histidine) transaminase and lipoxygenase, respectively) involved in biosynthesis and turnover of PEA in maize tissues. In addition, the effect of MJ application on fresh biomass and growth of the tested seedlings was recorded. Oneday MJ exposure increased the fresh weight of aerial parts and roots of Z. mays seedlings, whereas the opposite tendency occurred after 4-day of MJ treatment. One-day application of MJ resulted in an increase in the length of roots and its fluctuations in the aerial parts of maize plants, but extended exposure declined the growth of both parts of the seedlings. Methyl jasmonate elicitation caused various changes in the contents of PEA, PAA and PE in the maize seedlings. MJ treatments led to high upregulation of most genes, with the exception of three genes (i.e., ADH1, ADH2 and AO2) whose expression was downregulated after a 4-day exposure.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.67-80,fig.,ref.

Twórcy

  • Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
  • Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
autor
  • Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland

Bibliografia

  • CHEN XM, KOBAYASHI H, SAKAI M, HIRATA H, ASAI T, OHNISHI T, BALDERMANN S, and WATANABE N. 2011. Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol. Journal of Plant Physiology 168: 88–95. doi: 10.1016/j.jplph.2010.06.011
  • CHEN J, DONG X, LI Q, ZHOU X, GAO S, CHEN R, SUN L, ZHANG L, and CHEN W. 2013. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genomics 14: 857. doi: 10.1186/1471-2164-14-857
  • CONCHA CM, FIGUEROA NE, POBLETE LA, OÑATE FA, SCHWAB W, and FIGUEROA CR. 2013. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiology and Biochemistry 70: 433–444. doi: 10.1016/j.plaphy.2013.06.008
  • FACCHINI PJ, HUBER ALLANACH KL, and TARI LW. 2000. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation and metabolic engineering applications. Phytochemistry 54: 121–138. doi: 10.1016/S0031-9422(00)00050-9
  • GHARECHAHI J, KHALILI M, HASANLOO T, and SALEKDEH GH. 2013. An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots. Plant Physiology and Biochemistry 70: 115–122. doi: 10.1016/j.plaphy.2013.05.031
  • GONDA I, BAR E, PORTNOY V, LEV S, SCHAFFER AA, TADMOR Y, GEPSTEIN S, GIOVANNONI JJ, KATZIR N, LEWINSOHN E, and BURGER J. 2010. Branched chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. Journal of Experimental Botany 61: 1111–1123. doi: 10.1093/jxb/erp390
  • HIRATA H, OHNISHI T, ISHIDA H, TOMIDA K, SAKAI M, HARA M, and WATANABE N. 2012. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. Journal of Plant Physiology 169: 444–451. doi: 10.1016/j.jplph.2011.12.005
  • HORBOWICZ M, KOSSON R, WICZKOWSKI W, KOCZKODAJ D, and MITRUS J. 2011. The effect of methyl jasmonate on accumulation of 2-phenylethylamine and putrescine in seedlings of common buckwheat (Fagopyrum esculentum). Acta Physiologiae Plantarum 33: 897–903. doi: 10.1007/s11738-010-0616-5
  • HORBOWICZ M, WICZKOWSKI W, SAWICKI T, SZAWARA-NOWAK D, SYTYKIEWICZ H, and MITRUS J. 2015. Methyl jasmonate stimulates biosynthesis of 2-phenylethylamine, phenylacetic acid and 2-phenylethanol in seedlings of common buckwheat. Acta Biochimica Polonica 62: 235–240. doi: 10.18388/abp.2014_929
  • JERKOVIĆ I, and MARIJANOVIĆ Z. 2010. Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chemistry and Biodiversity 7: 2309–2325. doi: 10.1002/cbdv.201000021
  • KAMINAGA Y, SCHNEPP J, PEEL G, KISH CM, BEN-NISSAN G, WEISS D, ORLOVA I, LAVIE O, RHODES D, WOOD K, PORTERFIELD M, COOPER AJL, SCHLOSS JV, PICHERSKY E, VAINSTEIN A, and DUDAREVA N. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. Journal of Biological Chemistry 281: 23357–23366. doi: 10.1074/jbc.M602708200
  • KIM E-S, CHOI E, KIM Y, CHO K, LEE A, SHIM J, RAKWAL R, AGRAWAL GK, and HAN O. 2003. Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Molecular Biology 52: 1203–1213. doi: 10.1023/B:PLAN.0000004331.94803.b0
  • KLEMA VJ, and WILMOT CM. 2012. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. International Journal of Molecular Sciences 13: 5375–5405. doi: 10.3390/ijms13055375
  • KUŚ PM, JERKOVIĆ I, TUBEROSO CI, and ŠAROLIĆ M. 2013. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others. Chemistry and Biodiversity 10: 1638–1652. doi: 10.1002/cbdv.201200404
  • LAW V, KNOX C, DJOUMBOU Y, JEWISON T, GUO AC, LIU Y, MACIEJEWSKI A, ARNDT D, WILSON M, NEVEU V, TANG A, GABRIEL G, LY C, ADAMJEE S, DAME ZT, HAN B, ZHOU Y, and WISHART DS. 2014. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research 42: D1091-7. Available: http://www.drugbank.ca/spectra/ms_ms/2479.
  • LE THI H, LIN CH, SMEDA RJ, LEIGH ND, WYCOFF WG, and FRITSCHI FB. 2014. Isolation and identification of an allelopathic phenylethylamine in rice. Phytochemistry 108: 109–121. doi: 10.1016/j.phytochem.2014.08.019
  • LIVAK KJ, and SCHMITTGEN TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
  • LOYOLA-VARGAS V, RUÍZ-MAY E, GALAZ-ÁVALOS R, and DE-LA-PEÑA C. 2012. The role of jasmonic acid in root mitochondria disruption. Plant Signaling and Behavior 7: 611–614. doi: 10.4161/psb.20070
  • MAEDA H, SHASANY AK, SCHNEPP J, ORLOVA I, TAGUCHI G, COOPER BR, RHODES D, PICHERSKY E, and DUDAREVA N. 2010. RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Plant Cell 22: 832–849. doi: 10.1105/tpc.109.073247
  • OWEN CA, SPANO T, HAJJAR SE, TUNARU V, HARYTUNYAN S, FILALI L, and KALAITZIS P. 2004. Expression of genes for alcohol dehydrogenase and pyruvate decarboxylase in petals of cut carnation flowers in response to hypoxia and anoxia. Physiologia Plantarum 122: 412–418. doi: 10.1111/j.1399-3054.2004.00423.x
  • PAN Q-H, CHEN F, ZHU B-Q, MA L-Y, LI L, and LI JM. 2012. Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in ‘Vidal blanc’ grape berries. Molecular Biology Reports 39: 4319–4325. doi: 10.1007/s11033-011-1219-y
  • PATHURI IP, REITBERGER IE, HÜCKELHOVEN R, and PROELS RK. 2011. Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f. sp. hordei. Journal of Experimental Botany 62: 3449–3457. doi: 10.1093/jxb/err017
  • PAUWELS L, MORREEL K, DE WITTE E, LAMMERTYN F, VAN MONTAGU M, BOERJAN W, INZÉ D, and GOOSSENS A. 2008. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proceedings of the National tional Academy of Sciences USA 105: 1380–1385. doi: 10.1073/pnas.0711203105
  • PETERS JS, and FRENKEL C. 2004. Relationship between alcohol dehydrogenase activity and low-temperature in two maize genotypes, Silverado F1 and Adh1–Adh2– doubly null. Plant Physiology and Biochemistry 42: 841–846. doi: 10.1016/j.plaphy.2004.10.004
  • PIETRANGELI P, FEDERICO R, MONDOVÌ B, and MORPURGO L. 2007. Substrate specificity of copper-containing plant amine oxidases. Journal of Inorganic Biochemistry 101: 997–1004. doi: 10.1016/j.jinorgbio.2007.03.014
  • PLANAS-PORTELL J, GALLART M, TIBURCIO AF, and ALTABELLA T. 2013. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biology 13: 109. doi: 10.1186/1471-2229-13-109
  • RUIZ-MAY E, DE-LA-PEÑA C, GALAZ-ÁVALOS RM, LEI Z, WATSON BS, SUMNER LW, and LOYOLA-VARGAS VM. 2011. Methyl jasmonate induces ATP biosynthesis deficiency and accumulation of proteins related to secondary metabolism in Catharanthus roseus (L.) G. hairy roots. Plant and Cell Physiology 52: 1401–1421. doi: 10.1093/pcp/pcr086
  • SAKAI M, HIRATA H, SAYAMA H, SEKIGUCHI K, ITANO H, ASAI T, DOHRA H, HARA M, and WATANABE N. 2007. Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. Bioscience, Biotechnology and Biochemistry 71: 2408–2419. doi: 10.1271/bbb.70090
  • SIMON S, and PETRÁŠEK J. 2011. Why plants need more than one type of auxin. Plant Science 180: 454–460. doi: 10.1016/j.plantsci.2010.12.007
  • SMITH TA. 1977. Phenethylamine and related compounds in plants. Phytochemistry 16: 9–18.
  • THORPE MR, FERRIERI AP, HERTH MM, and FERRIERI RA. 2007. ¹¹C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226: 541–551. doi: 10.1007/s00425-007-0503-5
  • TIEMAN D, TAYLOR M, SCHAUER N, FERNIE AR, HANSON AD, and KLEE HJ. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences USA 103: 8287–8292. doi: 10.1073/pnas.0602469103
  • TIEMAN DM, LOUCAS HM, KIM JY, CLARK DG, and KLEE HJ. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68: 2660–2669. doi: 10.1016/j.phytochem.2007.06.005
  • TOMÈ F, CAMPEDELLI L, and BELLINI E. 1975. Distribution of phenylalanine transaminase and phenylalanine ammonia-lyase activities in etiolated and light irradiated radish seedlings (Raphanus sativus L.). Experientia 31: 1119–1121. doi: 10.1007/BF02326743
  • WATANABE S, HAYASHI K, YAGI K, ASAI T, MACTAVISH H, PICONE J, TURNBULL C, and WATANABE N. 2002. Biogenesis of 2-phenylethanol in rose flowers: incorporation of [2H8] L-phenylalanine into 2-phenylethanol and its β-Dglucopyranoside during the flower opening of Rosa ‘Hoh-Jun’ and Rosa damascena Mill. Bioscience, Biotechnology and Biochemistry 66: 943–947. doi: 10.1271/bbb.66.943
  • WIGHTMAN F, and LIGHTY DL. 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiologia Plantarum 55: 17–24. doi: 10.1111/j.1399-3054.1982.tb00278.x
  • YESBERGENOVA Z, YANG G, ORON E, SOFFER D, and FLUHR R. 2005. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant Journal 42: 862–876. doi: 10.1111/j.1365-313X.2005.02422.x
  • ZAREI A, TROBACHER CP, COOKE AR, MEYERS AJ, HALL JC, and SCHELP BJ. 2015. Apple fruit copper amine oxidase isoforms: peroxisomal MDAO1 prefers diamines as substrates, whereas extracellular MDAO2 exclusively utilizes monoamines. Plant and Cell Physiology 56: 137–147. doi: 10.1093/pcp/pcu155
  • ZDUNEK-ZASTOCKA E, and SOBCZAK M. 2013. Expression of Pisum sativum PsAO3 gene, which encodes an aldehyde oxidase utilizing abscisic aldehyde, is induced under progressively but not rapidly imposed drought stress. Plant Physiology and Biochemistry 71: 57–66. doi: 10.1016/j.plaphy.2013.06.027
  • ZHANG L, and XING D. 2008. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant and Cell Physiology 49: 1092–1111. doi: 10.1093/pcp/pcn086
  • ZHANG S, YAN Y, WANG B, LIANG Z, LIU Y, LIU F, and QI Z. 2014. Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. Journal of Bioscience and Bioengineering 117: 645–651. doi: 10.1016/j.jbiosc.2013.10.013

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-484dc110-b9fa-4fea-a627-12a8b4576de0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.