PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 2 |

Tytuł artykułu

Mass estimation of Santacrucian sloths from the Early Miocene Santa Cruz Formation of Patagonia, Argentina

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Miocene deposits of the Santa Cruz Formation, Patagonia, comprise a diverse and excellently preserved vertebrate fauna, allowing detailed paleobiological and paleoecological studies based on three ecological parameters: body mass, diet, and substrate preference. In contrast to the small and arboreal extant sloths, Bradypus and Choloepus, Santacrucian sloths were much more diverse and larger, and comprised 11 genera previously characterized as arboreal or climbing forms. Here, we focus on body mass estimation based on measurements of postcranial elements. We present a morphometric database comprising 64 linear, base-ten logged variables applied to Santacrucian sloths and a wide sample of extant mammals, as well as the body mass of the extant taxa as reported in the literature. To detect any potential phylogenetical bias, we performed a variance decomposition test on our sample of extant mammals. Based on four orthogram statistics, logged body mass was found not to be dependent on phylogenetic tree topology. Predictive equations for the body mass of extant mammals were generated through multiple regression analysis, using weighting procedures to avoid taxonomic biases and stepwise analysis to discard redundant variables. Using this procedure, we derived separate equations for the scapula, humerus, radius, ulna, pelvis, femur, tibia plus fibula, astragalus, and calcaneum. These equations were then applied to estimate the body mass of our sample of Santacrucian sloths. We obtained an average body mass of about 70 kg for the megalonychid Eucholoeops. Among stem megatherioids, Hapalops ranged between 30 and 80 kg, Analcimorphus was estimated at 67 kg, and Schismotherium at 44 kg. Larger genera included the megatheriid Prepotherium (~123 kg), and the mylodontids Analcitherium (~88 kg) and Nematherium (~89 kg). The medium to large body size of Santacrucian sloths imposed constraints on their climbing abilities. Megalonychids and stem megatherioids were likely unable to access the finest branches, while megatheriids and mylodonts were more terrestrial forms.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

59

Numer

2

Opis fizyczny

p.267-280,fig.,ref.

Twórcy

autor
  • Division Paleontologia de Vertebrados, Museo de La Plata, Paseo del Bosque sn, B1900FWA, La Plata, Buenos Aires, Argentina
  • CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina
  • Departamento de Ciencias Basicas, Universidad Nacional de Lujan, Ruta 5 y Av. Constitucion, B6700, Lujan, Buenos Aires, Argentina
  • CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Division Mastozoologia, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Av. Angel Ga llardo 470, C1405DJR, Ciudad Autonoma de Buenos Aires, Argentina
  • Division Paleontologia de Vertebrados, Museo de La Plata, Paseo del Bosque sn, B1900FWA, La Plata, Buenos Aires, Argentina
  • CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina
autor
  • Division Paleontologia de Vertebrados, Museo de La Plata, Paseo del Bosque sn, B1900FWA, La Plata, Buenos Aires, Argentina
  • CIC-Comision de Investigaciones Cientificas, Provincia de Buenos Aires, Argentina

Bibliografia

  • Alexander R.M., Jayes S.A.G., Maloiy, M.O., and Wathuta, M.E. 1979. Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). Journal of Zoology 189: 305–314.
  • Andrews, P., Lord, J.M., and Evans, E.M.N. 1979. Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11: 177–205.
  • Asher, R.J. and Helgen, K.M. 2010. Nomenclature and placental mammal phylogeny. BMC Evolutionary Biology 10: 102.
  • Bargo, M.S. and Vizcaíno, S.F. 2008. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45: 175–196.
  • Bargo, M.S., Toledo, N., and Vizcaíno, S.F. 2012. Paleobiology of the Santacrucian sloths and anteaters (Xenarthra, Pilosa). In: S.F. Vizcaíno, R.F. Kay, and M.S. Bargo (eds.), Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation, 216–242. Cambridge University Press, Cambridge.
  • Bargo, M.S., Vizcaíno, S.F., and Kay, R.F. 2009. Predominance of orthal masticatory movements in the early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and other megatherioid sloths. Journal of Vertebrate Paleontology 29: 870–880.
  • Biknevicius, A.R., McFarlane, A.D., and MacPhee, R.D.E. 1993. Body size in Amblyrhiza inundata (Rodentia: Caviomorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: Estimates and implications. American Museum Novitates 3079: 1–25.
  • Brown, J.H. and West, G.B. 2000. Scaling in Biology. 352 pp. Oxford University Press, New York.
  • Candela, A.M. and Picasso, M.B.J. 2008. Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. Journal of Morphology 269: 552–593.
  • Cartmill, M. 1985. Climbing. In: M. Hildebrand, D.M. Bramble, K.F. Liem, and D.B. Wake (eds.), Functional Vertebrate Morphology, 73–88. University of Chicago Press, Chicago.
  • Cassini, G.H., Vizcaíno, S.F., and Bargo, M.S. 2012. Body mass estimation in Early Miocene native South American ungulates: a predictive equation based on 3D landmarks. Journal of Zoology 287: 53–64.
  • Christiansen, P. and Fariña, R.A. 2003. Mass estimation of two fossil ground sloths (Xenarthra; Mylodontidae). Senckerbergiana Biologica 83: 95–101.
  • Christiansen, P. and Harris, J.M. 2005. Body size of Smilodon (Mammalia: Felidae). Journal of Morphology 266: 369–384.
  • Croft, D.A. 2000. Archaeohyracidae (Mammalia: Notoungulata) from the Tinguiririca Fauna, central Chile, and the evolution and paleoecology of South American mammalian herbivores. 311 pp. Unpublished Ph.D. Dissertation, University of Chicago, Chicago.
  • Croft, D.A. 2001. Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions 7: 271–287.
  • De Esteban-Trivigno, S., Mendoza, M., and De Renzi, M. 2008. Body mass estimation in Xenarthra: A predictive equation suitable for all quadrupedal terrestrial placentals? Journal of Morphology 269: 1276–1293.
  • Dray, S. and Dufour, A.B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22 (4): 1–20.
  • Duan, N. 1983. Smearing Estimate: A Nonparametric Retransformation Method. Journal of the American Statistical Association 78: 605–610.
  • Eisenberg, J.F. 1981. The Mammalian Radiations. 610 pp. University of Chicago Press, Chicago.
  • Elissamburu, A. and Vizcaíno, S.F. 2004. Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). Journal of Zoology 262: 145–159.
  • Fariña, R.A., Vizcaíno, S.F., and Bargo, M.S. 1998. Body size estimations in Lujanian (Late Pleistocene–Early Holocene of South America) mammal megafauna. Mastozoología Neotropical 5 (2): 87–108.
  • Ferguson, R.L. 1986. River loads underestimated by rating curves. Water Resources Research 22 (1): 74–76.
  • Fortelius, M. 1990. The mammalian dentition: a “tangle” view. Netherland Journal of Zoology 40: 312–328.
  • Gaudin, T.J. 2004. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zoological Journal of the Linnean Society 140: 255–305.
  • Gingerich, P.D. 1990. Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, University of Michigan 38: 79–92.
  • Hildebrand, M. 1988. Analysis of Vertebrate Structure. 3rd ed, 701 pp. Wiley and Sons, New York.
  • Hill, A.V. 1950. The dimensions of animals and their muscular dynamics. Science Progress 38: 209–230.
  • Hocking, R.R. 1976. The Analysis and Selection of Variables in Linear Regression. Biometrics 32: 1–49.
  • Kay, R.F. and Madden, R.H. 1997 Paleogeography and paleoecology. In: R.F. Kay (ed.), Vertebrate Paleontology in the Neotropics, 520–550. Smithsonian Institution Press, Washington, DC.
  • Kay, R.F., Vizcaíno, S.F., and Bargo, M.S. 2012. A review of the paleoenvironment and paleoecology of the Miocene Santa Cruz Formation. In: S.F. Vizcaíno, R.F. Kay, and M.S. Bargo (eds.), Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation, 331–365. Cambridge University Press, Cambridge.
  • McDonald, H.G. and De Iuliis, G. 2008. Fossil history of sloths. In: S.F. Vizcaíno and W.J. Loughry (eds.), The Biology of the Xenarthra, 24–36. University Press of Florida, Gainesville.
  • McNab, R.B. 1985. Energetics, population biology, and distribution of xenarthrans, living and extinct. In: G.G. Montgomery (ed.), The Evolution and Ecology of Armadillos, Sloths and Vermilinguas, 219–232. Smithsonian Institution Press, Washington DC.
  • McNab, R.B. 2000. Short-term energy conservation in endotherms in relation to body mass, habits, and environment. Journal of Thermal Biology 27: 459–466.
  • Mendoza, M., Janis, C.M., and Palmqvist, P. 2006. Estimating the body mass of extinct ungulates: a study on the use of multiple regression.Journal of Zoology 270: 90–101.
  • Millien, V. and Bovy, H. 2010. When teeth and bones disagree: body mass estimation of a giant extinct rodent. Journal of Mammalogy 91: 11–18.
  • Nowak, R.M. 1999. Walker’s Mammals of the World. Sixth Edition. 1936 pp. Johns Hopkins University Press, Baltimore.
  • Ollier, S., Couteron, P., and Chessell, D. 2006. Orthonormal transform to decompose the variance of a life-history trait across a phylogenetic tree. Biometrics 62: 471–477.
  • R Development Core Team 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  • Reed, K.E. 1998. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24: 384–408.
  • Rodrigues, F.H.G., Medri, I.M., de Miranda, G.H.B., Camilo-Alves, C., and Mourao, G. 2008. Anteater behavior and ecology. In: S.F. Vizcaíno and W.J. Loughry (eds.), The Biology of the Xenarthra, 257–268. University Press of Florida, Gainesville.
  • Sakamoto, Y., Ishiguro, M., and Kitagawa, G. 1986. Akaike Information Criterion Statistics. 290 pp. D. Reidel Publishing Company, Dordrecht.
  • Sargis, E.J. 2002a. Functional morphology of the forelimbs of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology 253: 10–42.
  • Sargis, E.J. 2002b. Functional morphology of the hindlimbs of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology 254: 149–185.
  • Scott, K. 1990. Postcranial dimensions of ungulates as predictors of body mass. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 301–335. Cambridge University Press, Cambridge.
  • Smith, R.J. 1984. Allometric scaling in comparative biology: problems of concept and method. American Journal of Physiology: Regulatory Integrative and Comparative Physiology 246: R152–R160.
  • Smith, R.J. 1993. Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90: 215–228.
  • Smith, M.J. and Savage, R.J.G. 1955. Some locomotory adaptations in mammals. Journal of the Linnean Society (Zoology) 42: 603–622.
  • Snowdon, P. 1991. A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research 21: 720–724.
  • Tauber, A.A. 1997a. Bioestratigrafía de la formación Santa Cruz (Mioceno inferior) en el extremo sudeste de la Patagonia. Ameghiniana 34: 413–426.
  • Tauber, AA. 1997b. Paleoecología de la Formación Santa Cruz (Mioceno inferior) en el extremo sudeste de la Patagonia. Ameghiniana 34: 517–529.
  • Taylor, B.K. 1978. The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. Journal of Morphology 157: 347–368.
  • Taylor, B.K. 1985. Functional anatomy of the forelimb in vermilinguas (anteaters). In: G.G. Montgomery (ed.), The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas, 151–171. Smithsonian Institution Press, Washington.
  • Toledo, N., Bargo, M.S., Cassini, G.H., and Vizcaíno, S.F. 2012. The forelimb of Early Miocene sloths (Mammalia, Xenarthra, Folivora): Morphometrics and functional implications for substrate preferences. Journal of Mammalian Evolution 19: 185–198.
  • Van Couvering, J.A.H. 1980. Community evolution in Africa during the Cenozoic, en fossils in the making. In: A.K. Berensmeyer and A. Hill (eds.), Fossils in the Making, 272–298. University of Chicago Press, Chicago.
  • Vizcaíno, S.F. 2009. The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35: 343–366.
  • Vizcaíno, S.F. and Milne, N. 2002. Structure and function in armadillo limbs (Mammalia, Xenarthra: Dasypodidae). Journal of Zoology, London 257: 117–127.
  • Vizcaíno, S.F., Bargo, M.S., and Fariña, R.A. 2008. Form, function, and paleobiology in xenarthrans. In: S.F. Vizcaíno and W.J. Loughry (eds.), The Biology of the Xenarthra, 86–99. University Press of Florida, Gainesville.
  • Vizcaíno, S.F., Bargo, M.S., Kay, R.F., and Milne, N. 2006. The armadillos (Mammalia, Xenarthra) of the Santa Cruz Formation (early–middle Miocene). An approach to their paleobiology. Palaeogeography, Palaeoclimatology, Palaeoecology 237: 255–269.
  • Vizcaíno, S.F., Bargo, M.S., Kay, R.F., Fariña, R.A., Di Giacomo, M., Perry, M.G., Prevosti, F.J., Toledo, N., Cassini, G.H., and Fernicola, J.C. 2010. A baseline paleoecological study for the Santa Cruz Formation (late–early Miocene) at the Atlantic coast of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeocology 292: 507–519.
  • Vizcaíno, S.F., Blanco, R.E., Bender, J.B., and Milne, N. 2011. Proportions and function of the limbs of glyptodonts (Mammalia, Xenarthra). Lethaia 44: 93–101.
  • Vizcaíno, S.F., Cassini, G.H., Toledo, N., and Bargo, M.S. 2012a. On the evolution of large size in mammalian herbivores of Cenozoic faunas of South America. In: B.D. Patterson and L.P. Costa (eds.), Bones, Clones, and Biomes: the History and Geography of Recent Neotropical Mammals, 76–101. University of Chicago Press, Chicago.
  • Vizcaíno, S.F., Fariña, R.A., and Mazzetta, G. 1999. Ulnar dimensions and fossoriality in armadillos and other South American mammals. Acta Theriologica 44: 309–320.
  • Vizcaíno, S.F., Fernicola, J.C., and Bargo, M.S. 2012b. Paleobiology of Santacrucian glyptodonts and armadillos (Xenarthra, Cingulata). In: S.F. Vizcaíno, R.F. Kay and M.S. Bargo (eds.), Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation, 194–215. Cambridge University Press, Cambridge.
  • Vizcaíno, S.F., Kay, R.F., and Bargo, M.S. 2012c. Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation. 370 pp. Cambridge University Press, Cambridge.
  • Vizcaíno, S.F., Zárate, M., Bargo, M.S., and Dondas, A. 2001. Pleistocene large burrows in the Mar del Plata area (Buenos Aires Province, Argentina) and their probable builders. In: S.F. Vizcaíno, R.A. Fariña, and C. Janis (eds.), Biomechanics and Paleobiology of Vertebrates. Acta Paleontologica Polonica 46: 157–169.
  • White, J.L. 1993. Indicators of locomotor habits in Xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology 13: 230–242.
  • White, J.L. 1997. Locomotor adaptations in Miocene Xenarthrans. In: R.F. Kay, R. Madden, R.L. Cifelli, and J.J. Flynn (eds.), Vertebrate Paleontology in the Neotropics. The Miocene Fauna of La Venta, Colombia, 246–264. Smithsonian Institution Press, Washington D.C.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-468fa9da-2d9b-47b0-92f8-c6290ec59de0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.