PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 66 |

Tytuł artykułu

Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study was to examine how stand age affects fine root biomass and morphology in different stages of first generation Scots pine forest development in post-agricultural fields. Stands of different ages (6-, 10-, 16-, 28-, and 47-yr-old) were studied at the same time to provide data on biometrical fine root features, i.e. biomass, length, surface area, volume, number of tips, root tip density, specific root tip density, specific root area, specific root length and fine root tissue density. Soil cores from the upper 20 cm of soil were used for the study. The results of the study show that fine root characteristics did significantly differ among stands of different age. Fine root biomass ranged from 0.9 Mg ha–1 (6-yr-old stand) to 2.3 Mg ha–1 (47-yr-old stand), whereas coarse root biomass ranged from 0.2 Mg ha–1 to 3.2 Mg ha–1, respectively. Fine root biomass in the older stands (10–47-yr-old) remains constant and is ca. 4 times higher than in the youngest stand (6-yrs-old). This shows that the fine root biomass of Scots pine in the upper soil horizons reached a constant biomass at a younger stand age than found in previously published papers, although at the same stage of stand development, i.e. canopy closure. Fine root length, surface area and volume expressed on per stand area basis were significantly different among stands; the highest values were found in the 10-yr-old stand, during the time of canopy closure. This means that stand age (i.e. age of trees in pure even-aged monocultures) is not a major factor influencing the fine root dynamics, instead stage of development and other stand and habitat characteristics may play an important role. Moreover, we found significant linear relationships among stand age and fine root length, surface area and number of fine root tips expressed on a per tree basis. Our study showed that stand age affects both fine root biomass and morphology in Scots pine forests when growing on post-agricultural fields. The differences revealed in our study indicate high plasticity of Scots pine fine roots in response to stand changes over age.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

66

Opis fizyczny

p.71-84,fig.,ref.

Twórcy

  • Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, PL-62-035 Kórnik, Poland
  • Poznań University of Life Sciences, Faculty of Forestry, Department of Forest Protection, Wojska Polskiego 71c, PL-60-625 Poznań, Poland
autor
  • University of Łódź, Institute of Ecology and Environment Protection, Department of Mycology, Banacha 12/16, PL-90-237 Łódź, Poland

Bibliografia

  • Bakker M.R., Turpault M.-P., Huet S., Nys C. 2008. Root distribution of Fagus sylvatica in a chronosequence in western France. Journal of Forest Research 13: 176–184.
  • Bauhus J., Messier C. 1999a. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Canadian Journal of Forest Research 29: 260–273.
  • Bauhus J., Messier C. 1999b. Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agronomy Journal 91: 142–147.
  • Bolte A., Villanueva I. 2006. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). European Journal of Forest Research 125: 15–26.
  • Bond-Lamberty B., Gower S.T., Wang C., Cyr P., Veldhuis H. 2006. Nitrogen dynamics of a boreal black spruce wildfire chronosequence. Biogeochemistry 81: 1–16.
  • Børja I., De Witt H.A., Steffenrem A., Majdi H. 2008. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiology 28: 773–784.
  • Claus A., George E. 2005. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35: 1617–1625.
  • Comas L.H., Eissenstat D.M. 2004. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology 18: 388–397.
  • Concise Statistical Yearbook of Poland 2007. Główny Urząd Statystyczny, Warszawa.
  • Curt T., Prévosto B. 2003. Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant and Soil 255: 265–279.
  • Dauer J.M., Withington J.M., Oleksyn J., Chorover J., Chadwick O.A., Reich P.B., Eissenstat D.M. 2009. A scanner-based approach to soil profile- wall mapping of root distribution. Dendrobiology 62: 35–40.
  • Eissenstat D.M. 1991. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytologist 118: 63–68.
  • Eissenstat D.M. 1992. Cost and benefits of constructing roots of small diameter. Journal of Plant Nutrition 15: 763–782.
  • Eissenstat D.M., Yanai R.D. 1997. The ecology of root lifespan. Advances in Ecological Research 27: 1–60.
  • Farfał D. 2010. Root vitality in the upper soil of pine stands ten years after thinning. Forest Research Papers 71: 225–230.
  • Finér L., Helmisaari H.-S., Lõhmus K., Majdi H., Brunner I., Børja I., Eldhuset T., Godbold D., Grebenc T., Konôpka B., Kraigher H., Möttönen M.-R., Ohashi M., Oleksyn J., Ostonen I., Uri V., Vanguelova E. 2007. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems 141: 394–405.
  • Finér L., Messier C., DeGrandpre L. 1997. Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire. Canadian Journal of Forest Research 27: 304–314.
  • Finér L., Ohashi M., Noguchi K., Hirano Y. 2011. Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management 261: 265–277.
  • Fujimaki R., Tateno R., Tokuchi N. 2007. Root development across a chronosequence in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Journal of Forest Research 12: 96–102.
  • Goebel M., Hobbie S.E., Bulaj B., Zadworny M., Archibald D.D., Oleksyn J., Reich P.B., Eissenstat D.M. 2011. Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecological Monographs 81: 89–102.
  • Grier C.C., Vogt K.A., Keyes M.R., Edmonds R.L. 1981. Biomass distribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research 11: 155–167.
  • Helmisaari H.-S., Derome J., Nöjd P., Kukkola M. 2007. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiology 27: 1493–1504.
  • Helmisaari H.-S., Hallbäcken L. 1999. Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management 119: 99–110.
  • Helmisaari H.-S., Makkonen K., Kellomäki S., Valtonen E., Mälkönen E. 2002. Below-and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecology and Management 165: 317–326.
  • Helmisaari H.-S., Ostonen I., Lõhmus K., Derome J., Lindroos A.-J., Merilä P., Nöjd P. 2009. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiology 29: 445–456.
  • Hishi T. 2007. Heterogeneity of individual roots within the fine root architecture: casual links between physiological and ecosystem functions. Journal of Forest Research 12: 126–133.
  • Hobbie E.A., Colpaert J.V. 2003. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist 157: 115–126.
  • Hobbie S.E., Oleksyn J., Eissenstat D.M., Reich P.B. 2010. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162: 505–513.
  • Idol T.W., Pope P.E., Ponder F.Jr. 2000. Fine root dynamics across a chronosequence of upland temperate deciduous forests. Forest Ecology and Management 127: 153–167.
  • Jagodziński A.M., Kałucka I. 2008. Age-related changes in leaf area index of young Scots pine stands. Dendrobiology 59: 57–65.
  • Jagodziński A.M., Kałucka I. 2010. Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap. Dendrobiology 64: 19–30.
  • Jagodziński A.M., Oleksyn J. 2009a. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. I. Wzrost i rozwój drzewostanu. Ecological consequences of silviculture at variable stand densities. I. Stand growth and development. Sylwan 153: 75–85.
  • Jagodziński A.M., Oleksyn J. 2009b. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. II. Produkcja i alokacja biomasy, retencja biogenów. Ecological consequences of silviculture at variable stand densities. II. Biomass production and allocation, nutrient retention. Sylwan 153: 147–157.
  • Jagodziński A.M., Oleksyn J. 2009c. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. III. Stabilność drzewostanu, fitoklimat, różnorodność biologiczna. Ecological consequences of silviculture at variable stand densities. III. Stand stability, phytoclimate and biodiversity. Sylwan 153: 219–230.
  • Law B.E., Sun O.J., Campbell J., Van Tuyl S., Thornton P.E. 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology 9: 510–524.
  • Leuschner C., Hertel D., Schmid I., Koch O., Muhs A., Hölscher D. 2004. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant and Soil 258: 43–56.
  • Majdi H., Pregitzer K., Moren A.-S., Nylund J.-E., Ågren G.I. 2005. Measuring fine root turnover in forest ecosystems. Plant and Soil 276: 1–8.
  • Makkonen K., Helmisaari H.-S. 2001. Fine root biomass and production in Scots pine stands in relation to stand age. Tree Physiology 21: 193–198.
  • Norby R.J., Jackson R.B. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist 147: 3–12.
  • Ostonen I., Lõhmus K. 2003. Proportion of fungal mantle, cortex and stele of ectomycorrhizas in Picea abies (L.) Karst. in different soils and site conditions. Plant and Soil 257: 435–442.
  • Ostonen I., Lõhmus K., Alama S., Truu J., Kaar E., Vares A., Uri V., Kurvits V. 2006. Morphological adaptations of fine roots in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth.) and black alder (Alnus glutinosa (L.) Gaertn.) stands in recultivated areas of oil shale mining and semicoke hills. Oil Shale 23: 187–202.
  • Ostonen I., Püttsepp Ü., Biel C., Alberton O., Bakker M.R., Lõhmus K., Majdi H., Metcalfe D., Olsthoorn A.F.M., Pronk A., Vanguelova E., Weih M., Brunner I. 2007. Specific root length as an indicator of environmental change. Plant Biosystems 141: 426–442.
  • Ostonen I., Tedersoo L., Suvi T., Lõhmus K. 2009. Does a fungal species drive ectomycorrhizal root traits in Alnus spp.? Canadian Journal of Forest Research 39: 1787–1796.
  • Peichl M., Arain M.A. 2006. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology 140: 51–63.
  • Persson H.A. 1983. The distribution and productivity of fine roots in boreal forests. Plant and Soil 71: 87–101.
  • Schmid I. 2002. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic and Applied Ecology 3: 339–346.
  • Schmid I., Kazda M. 2001. Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecology and Management 159: 37–47.
  • Tateno R., Fukushima K., Fujimaki R., Shimamura T., Ohgi M., Arai H., Ohte N., Tokuchi N., Yoshioka T. 2009. Biomass allocation and nitrogen limitation in a Cryptomeria japonica plantation chronosequence. Journal of Forest Research 14: 276–285.
  • Vanninen P., Mäkelä A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology 19: 823–830.
  • Vanninen P., Ylitalo H., Sievänen R., Mäkelä A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10: 231–238.
  • Vogt K.A., Grier C.C., Meier C.E., Keyes M.R. 1983. Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as affected by fine-root input. Ecological Monographs 53: 139–157.
  • Vogt K.A., Persson H. 1991. Measuring growth and development of roots. In: Lassoie J.P., Hinckley T.M. (Eds.). Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton, pp. 477–501.
  • Vogt K.A., Vogt D.J., Moore E.E., Fatuga M.B., Redlin M.R., Edmonds R.L. 1987. Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. Journal of Ecology 75: 857–870.
  • Withington J.M., Reich P.B., Oleksyn J., Eissenstat D.M. 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs 76: 381–397.
  • Yuan Z.Y., Chen H.Y.H. 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Critical Reviews in Plant Sciences 29: 204–221.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-45930699-3268-4ced-a585-98871d525d3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.