PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |

Tytuł artykułu

Molecular, biochemical, morphological and ultrastructural responses of cacao seedlings to aluminum (Al3plus) toxicity

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Al3+ toxicity is the main limiting factor of T. cacao sustainability in highly weathered acidic soils in Brazil. However, there is insufficient information on the effects of Al3+ toxicity in cacao. Results showed that, with the increase in Al3+ concentration, ‘Catongo’ 9 ‘Catongo’ had higher guaiacol peroxidase activity in the leaves, while CCN-10 9 SCA-6 had the highest activity in the roots. This resulted in an accumulation of P and K in the stems and K in the roots of ‘Catongo’ 9 ‘Catongo’, while CCN- 10 9 SCA-6 accumulated Mg, P and S in the leaves, K in the stems and Fe in the roots. Anatomical analysis of leaf mesophyll showed that CCN-10 9 SCA-6 presented increased thickness of the upper epidermis, palisade parenchyma, spongy parenchyma and leaf mesophyll compared to ‘Catongo’ 9 ‘Catongo’. The increment of Al3+ promotes disruption of leaf cell nuclear membranes, deformity of root epidermis cells, and electrodense material deposits in xylem parenchyma and endodermis cells. Furthermore, rupture of the plasma membrane and vacuole retraction of cortical parenchyma cells (PC) were observed in ‘Catongo’ 9 ‘Catongo’, while CCN-10 9 SCA-6 only experienced rupture of PC cell walls. Furthermore, increased SODcyt expression contributed to the tolerance of CCN-10 9 SCA-6 to increased oxidative stress promoted by Al3+. Although an increase in PER-1 gene expression was detected only with the 30 mg Al3+ L-1 dose in ‘Catongo’ 9 ‘Catongo’ leaves, the increase in GPX activity may have been due to the expression of this gene at a time prior to the collection of plant material for analysis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

02

Opis fizyczny

Article: 5 [17 p.], fig.,ref.

Twórcy

  • Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazare de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinbo, Ilheus, Bahia CEP 45662-900, Brazil
  • Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazare de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinbo, Ilheus, Bahia CEP 45662-900, Brazil
  • Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazare de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinbo, Ilheus, Bahia CEP 45662-900, Brazil
autor
  • Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazare de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinbo, Ilheus, Bahia CEP 45662-900, Brazil
autor
  • Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazare de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinbo, Ilheus, Bahia CEP 45662-900, Brazil
  • Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazare de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinbo, Ilheus, Bahia CEP 45662-900, Brazil

Bibliografia

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:53–159
  • Almeida A-AF, Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19(4):425–448
  • Anunciac¸ão DS, Leao DJ, Jesus RM, Ferreira SLC (2011) Use of multivariate analysis techniques for evaluation of analytical data–of the mineral composition of cabbage (Brassica oleracea). Food Anal Methods 4:286–292
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639
  • Cabala-Rosand P, Santana CJL (1983) A calagem na cultura do cacau. In: Simpásio sobre acidez e calagem. XV Reunião Brasileira de Fertilidade do Solo. Campinas, Brazil, 25:321–345
  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37(4):297–303
  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Bresugem F (2000) Dual action of the active oxygen species during plant stress response. Cell Mol Life Sci 57:779–795
  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). I. uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693
  • Di Cagno R, Guide L, Stefani A, Soldatni CF (1999) Effects of cadmium on growth of Helianthus annuus seedlings: physiological aspects. New Phytol 14(1):65–71
  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665
  • Fageria NK, Baligar VC (2003) Fertility management of tropical acid soils for sustainable crop production. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 359–385
  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Comm Soil Sci Plant Anal 19:959–987
  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plant. Ann Rev Plant Biol 29:511–566
  • Giannakoula A, Moustakas M, Mylona P, Papadakis I, Yupsanis T (2008) Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation. J Plant Physiol 165:385–396
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(2):909–930
  • Gomes MP, Marques TCLLSM, Nogueira MOG, Castro EM, Soares AM (2011) Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sci Agric 68(5):566–573
  • Hamel F, Breton C, Houde M (1998) Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205:531–538
  • Hardy F (1960) The fungus diseases of cacao and their control. In: Hardy F (ed) Cacao manual. Inter-American Institute of Agricultural Science, Costa Rica, pp 231–259
  • Hartwig I, Oliveira AC, Carvalho FIF, Bertan I, Silva JAG, Schmidt DAM, Valério IP, Maia LC, Fonseca DAR, Reis CES (2007) Mecanismos associados á tolerância ao alumínio em plantas. Semina: Ciências Agrárias, Londrina, 28(2):219–228
  • Hebbar P, Bittenbender HC, O’Doherty D (2011) Farm and forestryproduction and marketing profile for cacao (Teobroma cacao). In: Elevitch CR (ed) Specialty Crops for Pacific Island Agroforestry. Permanent Agriculture Resources, Holualoa, Hawaii. http://www.agroforestry.net/scps (revised)
  • Hodson MJ, Wilkins DA (1991) Localization of aluminium in the roots of Norway spruce (Picea abies L. Karst) inoculated with Paxillus involutus Fr. New Phytol 118:273–278
  • ICCO (2010/11) Quarterly Bulletin of Cocoa Statistics. London: International Cocoa Organization, p 63
  • Kinraide TB (1991) Identity of the rhizotoxic aluminium species. Plant Soil 134:167–178
  • Kochian LV, Pence NS, Letham DLD, Pineros MA, Magalhaes JV, Hoekenga OA, Garvin DF (2002) Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant Soil 247:109–119
  • Konarska A (2008) Changes in the ultrastructure of Capsicum annuum l. seedlings roots under aluminum stress conditions. Acta Agrobotânica 61(1):27–32
  • Konarska A (2010) Effects of aluminum on growth and structure of red pepper (Capsicum annuum L.) leaves. Acta Physiol Plant 32(1):145–151
  • Kovácik J, Klejdus B, Hedbavny J (2010) Effect of aluminium uptake on physiology, phenols and amino acids in Matricaria chamomilla plants. J Hazard Mater 178:949–955
  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Rio de Janeiro, p 198
  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. Environ Exp Bot 62:331–343
  • Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integ Plant Biology 40:221–230
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 25:402–408
  • Logan DC (2006) Plant mitochondrial dynamics. Biochim Biophys Acta 1763:430–441
  • Ma F, Shen R, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589
  • Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31:687–696
  • Macêdo CEC, Jan VVS (2008) Effect of aluminum stress on mineral nutrition in rice cultivars differing in aluminum sensitivity. R Bras Eng Agr Amb 12(4):363–369
  • Matsumoto H, Hirasawa E, Torikai H, Takahashi E (1976) Localization of absorbed aluminium in pea root and its binding to nucleic acid. Plant Cell Physiol 17(1):127–137
  • Mcquattie CJ, Schier GA (1993) Effect of ozone and aluminum on pitch pine (Pinus rigida) seedlings: needle ultrastructure. Can J For Res 23:1375–1387
  • Minibayeva FV, Gordon LK, Kolesnikov OP, Chasov AV (2001) Role of extracellular peroxidase in the superoxide production by wheat root cells. Protoplasma 217:125–128
  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene net work of plants. Trends Plant Sci 9:490–498
  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309
  • Mohanty S, Das AB, Das P, Mohanty P (2004) Effect of a low dose of aluminum on mitotic and meiotic activity, 4c DNA content, and pollen sterility in rice, Oryza sativa L. cv Lalat. Ecotoxicol Environ Saf 59:70–75
  • Moustakas M, Ouzounidou G, Eleftheriou EP, Lannoye R (1996) Indirect effects of aluminium stress on the function of the photosynthetic apparatus. Plant Physiol Biochem 34(4):553–560
  • Moustakas M, Eleftheriou EP, Ouzounidou G (1997) Short-term effects of aluminium at alkaline pH on the structure and function of the photosynthetic apparatus. Photosynthetica 34:169–177
  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. Environ Exp Bot 53:1237–1247
  • Panda SK, Matsumoto H (2010) Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals 23(4):753–762
  • Peixoto PHP, Cambraia J, Sant’Anna R, Mosquim PR, Moreira MA (1999) Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. R Bras Fisiol Veg 11(3):137–143
  • Pirovani CP, Has Carvalho, Machado RCR, Gomes DS, Alvim FC, Pomella AWV, Gramacho KP, Cascardo JCM, Pereira GAG, Micheli F (2008) Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches broom disease. Electrophoresis 29:2391–2401
  • Ranieri A (1993) Gluthatione-ascorbic acid cycle in pumpkin plants grown under polluted air in open-top chambers. J Plant Physiol 142:286–290
  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque-stain in electron microscopy. J Cell Biol 17:208–212
  • Ribeiro MAQ, Almeida AAF, Mielke MS, Gomes FP, Pires MV, Baligar VC (2011) Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. J Plant Nutr 36(8):1161–1179
  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418
  • Shi G, Caia Q (2009) Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environ Exp Bot 67:112–117
  • Siegel BZ (1993) Plant peroxidase–an organismic perspective. Plant Growth Regul 12:303–312
  • Smythe AJ (1966) The selection of soils for cocoa. Soils Bull. FAO 5. Food and Agricultural Organization of the United Nation, Rome, p 76
  • Snowden KC, Gardner RC (1993) Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol 103:855–861
  • Souza Jr JO (2007) Substratos e adubac¸ão para mudas clonais de cacaueiro. Tese, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz
  • Sridhar BBM, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141
  • Sujkowska-Rybkowska M (2012) Reactive oxygen species production and antioxidative defense in pea (Pisum sativum L.) root nodules after short-term aluminum treatment. Acta Physiol Plant 34:1387–1400
  • Taiz L, Zeiger E (2013) Fisiologia vegetal, 4th edn. Artmed, Porto Alegre, p 820 Tamás L, Huttová J, Mistrík I, Simonovicova M, Siroka B (2006) Aluminum induced drought and oxidative stress in barley roots. J Plant Physiol 163:781–784
  • Van Fleet DS (1961) Histochemistry and function of the endodermis. Bot Rev 27:165–221
  • Welinger K (1992) Plant peroxidases: structure-function relationships. In: Penel C, Gaspar TH, Greppin H (eds) Plant peroxidases 1980-1990, topics and detailed literature on molecular, biochemical, and physiological aspects. University of Geneva, Switzerland, pp 1–24
  • Wood GAR, Lass RA (2001) Cocoa. Blackwell Science Ltd., Oxford p 620
  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208
  • Zhao FJ, Lombi E, Breedon T, Mcgrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell Environ 23:507–514

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-44cc460f-ce65-4aa7-980c-19abd42f5d72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.