PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 70 | 2 |

Tytuł artykułu

Root nodule structure in Chamaecytisus podolicus

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Struktura brodawek korzeniowych u Chamaecytisus podolicus

Języki publikacji

EN

Abstrakty

EN
By means of microscopic analyses, it was shown that root nodules formed by Chamaecytisus podolicus exhibited all structural features typical for indeterminate nodules of temperate genistean shrubs: (i) apical nodule meristem composed of infected and non-infected domains, (ii) parenchymatous bacteroid-containing tissue with infected cells only resulting from mitotic activity of infected meristematic cells, (iii) absence of infection threads, and (iv) convoluted bacteroids singly enclosed in a symbiosome membrane. For the first time, it was shown that the nodule meristem is organized into longitudinal files of sister cells.
PL
Na podstawie analiz przeprowadzonych metodami mikroskopowymi wykazano, że brodawki korzeniowe powstające u Chamecytisus podolicus mają wszystkie cechy strukturalne typowe dla brodawek o nieograniczonym wzroście wytwarzanych przez krzewy klimatu umiarkowanego należące do plemienia Genisteae: (i) merystem apikalny składający się z domen zainfekowanej i niezainfekowanej, (ii) miękiszową tkankę bakteroidalną zawierającą tylko komórki zainfekowane, wytwarzaną poprzez podziały mitotyczne komórek zainfekowanych merystemu, (iii) brak nici infekcyjnych oraz (iv) zwinięte bakteroidy występujące pojedynczo w symbiosomach. Po raz pierwszy wykazano, że w merystemie brodawki występują podłużnie ułożone ciągi komórek siostrzanych.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

2

Opis fizyczny

Article 1716 [12p.], fig.,ref.

Twórcy

Bibliografia

  • 1. Pifkó D, Shevera M. Proposal to conserve Cytisus podolicus (Chamaecytisus podolicus) against Cytisus bucovinensis, and Cytisus blockianus (Chamaecytisus blockianus) against Cytisus kerneri and C. marilauni (Leguminosae). Taxon. 2013;62:181–183.
  • 2. Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M, editors. Krytyczna lista roślin naczyniowych Polski [Internet]. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences. 2017 [cited 2017 Feb 20]. Available from: http://bomax.botany.pl/ib-db/check/
  • 3. Chervona knyha Ukrayiny [Internet]. 2010–2017 [cited 2017 Feb 20]. Available from: http://redbook-ua.org/item/chamaecytisus-podolicus/
  • 4. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, et al., editors. Flora Europaea: Rosaceae to Umbelliferae; vol 2. London: Cambridge University Press; 1968.
  • 5. Ènciklopediâ dekorativnyh sadovyh rastenij [Internet]. 2017 [cited 2017 Feb 20]. Available from: http://flower.onego.ru
  • 6. Sprent JI. Nodulation in legumes. Kew: Royal Botanic Gardens; 2001.
  • 7. Łotocka B. Anatomia rozwojowa i ultrastruktura brodawek korzeniowych o nieograniczonym wzroście i jej specyfika u roślin z plemienia Genisteae. Warszawa: Wydawnictwo SGGW; 2008. (Rozprawy Naukowe i Monografie).
  • 8. Kalita M, Stępkowski T, Łotocka B, Małek W. Phylogeny and nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Arch Microbiol. 2006;186:87–97. https://doi.org/10.1007/s00203-006-0124-6
  • 9. Łotocka B, Arciszewska-Kozubowska B, Dąbrowska K, Golinowski W. Growth analysis of root nodules in yellow lupin. Annals of the Warsaw University of Life Sciences – SGGW, Agriculture. 1995;29:3–12.
  • 10. Łotocka B, Kopcińska J, Golinowski W. Morphogenesis of root nodules in white clover. I. Effective root nodules induced by the wild type of Rhizobium leguminosarum biovar. trifolii. Acta Soc Bot Pol. 1997;66:273–292. https://doi.org/10.5586/asbp.1997.032
  • 11. Borucki W. Some new aspects of the pea (Pisum sativum L.) root nodule ultrastructure. Acta Soc Bot Pol. 1996;65:221–233. https://doi.org/10.5586/asbp.1996.035
  • 12. Vasse J, de Billy F, Camut S, Truchet G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol. 1990;172:4295–4306. https://doi.org/10.1128/jb.172.8.4295-4306.1990
  • 13. Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi É, Franssen H, et al. Fate map of Medicago truncatula root nodules. Development. 2014;141:3517–3528. https://doi.org/10.1242/dev.110775
  • 14. Łotocka B, Kopcińska J, Skalniak M. Review article: the meristem in indeterminate root nodules of Faboideae. Symbiosis. 2012;58:63–72. https://doi.org/10.1007/s13199-013-0225-3
  • 15. Sajnaga E, Małek W, Łotocka B, Stępkowski T, Legocki AB. The root–nodule symbiosis between Sarothamnus scoparius L. and its microsymbionts. Antonie Van Leeuwenhoek. 2001;79:85–391. https://doi.org/10.1023/A:1012010328061
  • 16. Selami N, Auriac MC, Catrice O, Capela D, Kaid-Harche M, Timmers T. Morphology and anatomy of root nodules of Retama monosperma (L.) Boiss. Plant Soil. 2014;379:109–119. https://doi.org/10.1007/s11104-014-2045-5
  • 17. Vega-Hernández MC, Dazzo FB, Jarabo-Lorenzo A, Alfayate MC, León-Barrios M. Novel infection process in the indeterminate root nodule symbiosis between Chamaecytisus proliferus (tagasaste) and Bradyrhizobium sp. New Phytol. 2001;150:707–721. https://doi.org/10.1046/j.1469-8137.2001.00120.x
  • 18. Trigiano RN, Gray DJ, editors. Plant tissue culture, development, and biotechnology. Boca Raton, FL: CRC Press; 2010.
  • 19. Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, et al. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol. 2008;45:84–93. https://doi.org/10.1016/j.fgb.2007.07.013
  • 20. Bettelheim KA, Gordon JF, Taylor J. The detection of a strain of Chromobacterium zividum in the tissues of certain leaf-nodulated plants by the immunofluorescence technique. J Gen Microbiol. 1968;54:177–184. https://doi.org/10.1099/00221287-54-2-177
  • 21. Lersten NR, Horner HTJ. Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. Bot Rev. 1976;42:145–214. https://doi.org/10.1007/BF02860721
  • 22. Łotocka B, Kopcińska J, Górecka M, Golinowski W. Formation and abortion of root nodule primordia in Lupinus luteus L. Acta Biol Crac Ser Bot. 2000;42:87–102.
  • 23. van Spronsen, PC, Bakhuizen R, van Brussel TAN, Kijne JW. Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur J Cell Biol. 1994;64:88–94.
  • 24. Timmers ACJ, Soupéne E, Auriac MC, de Billy F, Vasse J, Boistard P, et al. Saprophytic intracellular rhizobia in alfalfa nodules. Molecular Plant–Microbe Interactions Journal. 2000;13:1204–1213. https://doi.org/10.1094/MPMI.2000.13.11.1204
  • 25. Parsons R, Day DA. Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ. 1990;13:501–512. https://doi.org/10.1111/j.1365-3040.1990.tb01066.x
  • 26. Brown SM, Walsh KB. Anatomy of the legume nodule cortex with respect to nodule permeability. Aust J Plant Physiol. 1994;21:49–68. https://doi.org/10.1071/PP9940049
  • 27. Brown SM, Walsh KB. Anatomy of the legume nodule cortex: species survey of suberisation and intercellular glycoprotein. Aust J Plant Physiol. 1996;23:211–225. https://doi.org/10.1071/PP9960211
  • 28. Witty JF, Skøt L, Revsbech NP. Direct evidence for changes in the resistance of legume root nodules to O2 diffusion. J Exp Bot. 1987;38:1129–1140. https://doi.org/10.1093/jxb/38.7.1129

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-42cfcca2-4ae2-4188-a269-b669944273ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.