PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 1 |

Tytuł artykułu

Osobliwe cechy budowy i metabolizmu archebakterii

Warianty tytułu

EN
Unusual features of archaeal cell structures and metabolism

Języki publikacji

PL

Abstrakty

PL
Archebakterie stanowią bardzo złożoną, a przez to niezwykle interesującą grupę drobnoustrojów, zarówno ze względu na ich uzdolnienia do zasiedlania rozmaitych środowisk, w tym zwłaszcza ekstremalnych, jak również z powodu specyficznej budowy komponentów komórkowych. W ostatnich latach obserwuje się duży rozwój wiedzy na ich temat, co skutkuje pojawieniem się ogromnej puli mniej lub bardziej szczegółowych publikacji. W literaturze polskojęzycznej brakuje jednak prac przeglądowych ujmujących szerzej temat budowy i fizjologii tych organizmów. Niniejsza praca uzupełnia tę lukę, omawiając wybrane elementy komórek Archaea wyróżniające się unikalną budową lub funkcjami, takie jak warstwa S, ściana komórkowa, błona cytoplazmatyczna oraz różnorodne wypustki komórkowe. Ponadto zwrócono uwagę na niektóre niezwykłe aspekty metabolizmu archebakterii.
EN
Archaea are very complex and thus an extremely interesting group of microorganisms, both in terms of their abilities to colonize different environments, including extreme conditions, as well as due to the specific structure of cellular components. In recent years, a large development of knowledge about those organisms was observed, what results in the appearance of a huge pool of more or less detailed publications. However, Polish literature lacks the reviews wider endearing structure and physiology of those organisms. The present work complements that gap by discussing selected elements of Archaea cells of unique structure or functions, such as the S layer, the cell wall, cytoplasmic membrane and a variety of cellular appendages. In addition, some of the remarkable aspects of the archaebacteria metabolism were brought up.

Wydawca

-

Rocznik

Tom

13

Numer

1

Opis fizyczny

s.21-39,rys.,bibliogr.

Twórcy

  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy we Wrocławiu, ul.Chełmońskiego 37/41,51-630 Wrocław
autor
  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy we Wrocławiu, ul.Chełmońskiego 37/41,51-630 Wrocław
autor
  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy we Wrocławiu, ul.Chełmońskiego 37/41,51-630 Wrocław
autor
  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy we Wrocławiu, ul.Chełmońskiego 37/41,51-630 Wrocław

Bibliografia

  • Albers S.V., Pohlschroder M., 2009. Diversity of archaeal type IV pillin-like structures. Extremophiles, 13, 403-410.
  • Albers S.V., Szabó Z., Driessen A.J.M., 2006. Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nat. Rev. Microbiol., 4, 537-548.
  • Bapteste E., Brochier C., Boucher A.Y., 2005. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea., 1, 353-363.
  • Benvegnu T., Lemiegre L., Cammas-Marion S., 2008. Archaeal lipids: innovative materials for biotechnological applications. Eur. J. Org. Chem., 4725-4744.
  • Benvegnu T., Lemiegre L., Cammas-Marion S., 2009. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Rec. Pat. Drug Deliv. & Formul., 3, 206-220.
  • Brochier-Armanet C., Boussau B., Gibaldo S., Forterre P., 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol., 6(3), 245-253.
  • Cavicchioli R., Thomas T., Curmi P.M.G., 2000. Cold stress response in Archaea. Extremophiles., 4, 321-331.
  • Cavicchioli R., 2011. Archaea- timeline of the third domain. Nature Rev. Microbiol. 9, 51-61.
  • Chintalapati S., Kiran M.D., Shivaji S., 2004. Role of membrane lipid fatty acids in cold adaptation. Cell. Mol. Biol., 50(5), 631-642.
  • Craig L., Li J., 2008. Type IV pili: paradoxes in form and function. Curr. Opinion Str. Biol., 18(2), 267-277.
  • Craig L., Pique M.E., Tainer J.A., 2004. Type IV pilus structure and bacterial pathogenity. Nature Rev. Microbiol., 2(5), 363-378.
  • DeLong E.F., Pace N.R., 2001. Environmental diversity of Bacteria and Archaea. Syst. Biol., 50(4), 470-478.
  • Deppenmeier U., 2002. The unique biochemistry of methanogenesis. Progr. Nucleic Acid Res. Mol. Biol., 71, 224-275.
  • Doolittle W.F., Logsdon M.J., 1998. Archaeal genomics: Do archaea have a mixed heritage? Curr. Biol., 8(6), 9-11.
  • Elkins J.G., Podar M., Graham D.E., 2008. A korarchaeal genome reveals insights into the evolu­tion of the Archaea. PNAS 105(23), 8102-8107.
  • Ellen A.E., Zolghadr B., Driessen A.M.J., Albers S.V., 2010. Shaping the archaeal cell envelope. Archaea., 10, 1155-1168.
  • Engelhardt H., 2007. Are S-layers exoskeletons? The basic function of protein surface layers revis­ited. J. Str. Biol., 160, 115-124.
  • Falb M., Kerstin Muller K., Konigsmaier L., Oberwinkler T., Horn P., von Gronau S., Gonzalez O., Pfeiffer F., Bornberg-Bauer E., Oesterhelt D., 2008. Metabolism of halophilicarchaea. Extre- mophiles., 12, 177-196.
  • Fröls S., Ajon M., Wagner M., Teichmann D., Zolghadr B., Folea M., Boekema E.J., Dreissen A.J., Schleper C., Albers S.V., 2008. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol. Microbiol., 70, 938-952.
  • Garcia J.L., Patel B.K.C., Ollivier B., 2000. Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea, Anaerobe 6, 205-226.
  • Golyshina O.V., Timmis K.N., 2005. Ferroplasma and relatives, recently discovered cell wall- lacking archaea making a living in wxtremely acid, heavy metal-rich environments. Environ. Microbiol., 7(9), 1277-1288.
  • Gonzalez O., Gronau S., Pfeiffer F., Mendoza E., Zimmer R., Oesterhelt D., 2009. Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum. Comput. Biol. ,5(4), 1-12.
  • Gribaldo S., Brochier-Armanet C., 2006. The origin and evolution of Archaea: a state of the art. Phil. Trans. R. Soc., 361, 1007-1022.
  • Huber H., Hohn M.J., Rachel R., Fuchs T., Wimmer V.C., Stetter K.O., 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature, 417(6884), 27-28.
  • Hugler M., Huber H., Stetter K.O., Fuchs G., 2003. Autotrophic CO2 fixation pathways in Archaea (Crenarchaeota). Archaeal Microbiol. 179, 160-173.
  • Jacquemet A., Barbeau J., Lemiegre L., Benvegnu T., 2009. Archaeal tetraether bipolar lipids: structure, function and application. Biochemie, 91, 711-713.
  • Jarrell K.F., Bayley D.P., Kostyukova A.S., 1996. The archaeal flagellum: a unique motility structure. J. Bacteriol., 178(17), 5057-5064.
  • Jarrel K.F., Ding Y., Nair D.B., Siu S., 2013. Surface appendages of Archaea: structure, function, genetics and assembly. Life, 3, 86-117.
  • Jarrell K.F., Jones G.M., Nair D.B., 2010. Biosynthesis and role of N-linked glycosylation in cell surface structures of Archaea with focus on flagella and S layers. Int. J. Microbiol. ID 470138.
  • Jarrell K.F., McBridge M.J., 2008. The surprisingle diverse ways that prokaryotes move. Nat. Rev. Microbiol., 6, 285-300.
  • Jin Y., Honig T., Ron I., Friedman N., Sheves M., Cahen D., 2008. Bacteriorhodopsin as an elec­tronic medium for biomolecular electronics. Chem. Soc. Rev., 37, 2422-2432.
  • Kandler O., Koning H., 1998. Cell wall polymers in Archaea. Cell. Mol. Life Sci., 54, 305-308.
  • Kaster A.-K., Goenrich M., Seedofr H., Liesegang H., Wollherr A., Gottschalk G., Thauer R.K., 2011. More than 200 genes required for methane formation from H2 and CO2 and energy con­servation are present in Methanothermobacter marburgensis and Methanothermobacter ther- mautotrophicus. Archaea. ID 973848.
  • Kates M., Kushner D.J., Matheson A.T., 1993. The biochemistry of Archaea. Elsevier. Amster­dam.
  • Koga Y., 2012. Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea. ID 789652.
  • Koga Y., Morii H., 2005. Recent advances in structural research of ether lipids from Archaea includ­ing comparative and physiological aspects. Biosci. Biotechnol. Biochem., 69(11), 2019-2034.
  • Koga Y., Morii H., 2007. Biosynthesis of ether-type polar lipids in Archaea and evolutionary con­siderations. Microbiol. Mol. Biol. Rev., 71(1), 97-120.
  • Konings W.N., Albers S.V., Koning S., Driessen A.J.M., 2002. Cell membrane plays a crucial role in survival of Bacteria and Archaea in extreme environments. Ant. Leeuw., 81, 61-72.
  • Löscher C.R., Kock A., Könneke M., LaRoche J., Bange H.W., Schmitz R.A., 2012. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosci., 9, 2419-2429.
  • Matsumi R., Atomi H., Driessen A.J.M., van der Oost J., 2011. Isoprenoid biosynthesis in Archaea. Biochemical and evolutionary implications. Res. Microbiol., 162, 39-52.
  • Moissl C., Rachel R., Briegel A., Engelhardt H., Huber R., 2005. The unique structure of archaeal "hami", complex cell appendages with nano-grappling hooks. Mol. Microbiol., 56, 361-370.
  • Ng S.Y.M., Zolghadr B., Driessen A.J.M, Albersv S.V., Jarrell K.F., 2008. Cell surface structures of Archaea. J. Bacteriol., 190(18), 6039-6047.
  • Nickell S., Hegerl R., Baumeister W., Rachel R., 2003. Pyrodictum canulae enter the periplas- matic space but not enter the cytoplasm, as revealed by cryo-electron tomography. J. Str. Biol., 141(1), 34-42.
  • Offre P., Spang A., Schleper Ch., 2013. Archaea in biogeochemicalcycles. Annu. Rev. Microbiol. 67, 437-457.
  • Pum D., Tocka-Herrera J.L., Sleyter U.B., 2013. S-leyer protein self-assembly. Intern. J. Mol. Sci., 14, 2484-2501.
  • Rachel R., Wyschkony I., Riehl S., Huber H., 2002. The ultrastructure of Ignococcus: Evidence for a novel outher membrane and for intracellular vesicle budding in an archaeon. Archaea, 1, 9-18.
  • Robertson C.E., Harris J.K., Spear J.R., Pace N.R., 2005. Phylogenetic diversity and ecology of environmental Archaea. Curr. Opin. Microbiol., 8, 638-642.
  • Rohlin L., Leon D.R., Kim U., Loo J.A., Ogorzalek Loo R.R., Gunsalus R.P., 2012. Identification of the major expressed S-layer and cell surface-layer-related proteins in the model methanogenic Archaea: Methanosarcina barkeri Fosaro and Methanosarcina acetivorans C2A. Archaea. ID 873589.
  • Sara M., Sleytr U.B., 2000. S-layer proteins. J. Bacteriol., 182(4), 859-868.
  • Schleper Ch., Nicol G.W., 2010. Ammonia-oxidising Archaea - physiology, ecology and evolution. Adv. Microb. Physiol., 57, 1-41.
  • Schouten S., Hopmans E.C., Damste J.S.S., 2013. The organic geochemistry of glycerol dialkyl glicerol tetraether lipids: a review. Org. Geochem., 54, 19-61.
  • Serrano J.A., Camacho M., Bonete M.J., 1998. Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii. FEBS Letters, 434, 13-16.
  • Shiu P-J., Ju Y-H., Chen H-M., Lee Ch-K., 2013. Facile isolation of purple membrane from Ha- lobacterium salinarum via aqueous-two-phase system. Protein Expr. Purif., 89, 219-224.
  • Sleytr U.B., Sara M., 1997. Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends in Biotechnol., 15, 20-26.
  • Steenbakkers P.J.M., Geerts W.J., Ayman-Oz N.A., Keltjens J.T., 2006. Identification of pseudo- murein cell wall binding domains. Mol. Microbiol., 62(6), 1618-1630.
  • Szabo Z., Groeneveld M., Zolghadr B., Schelert J., Albers S.V., Blum P., Boekema E.J., Driessen A.J., 2007. Flagellar motility and structure in the hyperthermoacidophilic archaeon Supfolobus solfataricus. J. Bacteriol., 189, 4305-4309.
  • Trivedi S., Choudhary O.P., Gharu J., 2011. Different proposed application of bacteriorhodopsin. Recent Patents on DNA & Gene Sequences., 5, 35-40.
  • Ulrih N.P., Gmajner D., Raspor P., 2009. Structural and physicochemical properties of polar lipids from thermophilic archaea. Appl. Microbiol. Biotechnol., 84, 249-260.
  • van de Vossenberg J.L.C.M., Driessen A.J.M., Konings W.N., 1998. The essence of being extremo- philic: the role of the unique archaeal membrane lipids. Extremophiles, 2, 163-170.
  • van de Vossenberg J.L.C.M., Driessen A.J.M., Grant W.D., Konings W.N., 1999. Lipid membranes from halophilic and alkali-halophilic Achaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles, 3, 253-257.
  • Visweswaran G.R.R., Dijkstra B.W., Kok J., 2010. Two major archaeal pseudomurein endoisopep- tidases: PeiW and PeiP. Archaea. ID 480492.
  • Wang Y.A., Yu X., Ng S.Y.M., Jarrell K.F., Egelman E.H., 2008. The structure of an archaeal pilus. J. Mol. Biol., 381(2), 456-466.
  • Wirth R., Bellack A., Bertl M., Bilek Y., Heimerl T., Herzog B., Leisner M., Probst A., Rachel R., Sarbu C., Schopf S., Wanner G., 2011. The mode of cell growth in selected Archaea is similar to the general mode of cell wall growth in bacteria as revealed by fluorescent dye analysis. Appl. Environ. Microbiol., 77(5), 1556-1562.
  • Woese C.R., Fox G., 1977. Phylogenetic structure of the prokaryotic domain: the primary king­doms. PNAS. 74(11), 5088-5090.
  • Woese C.R., Kandler O., Wheelis M.L., 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. PNAS, 87(12), 4576-4579.
  • Yang Y., Levick D.T., Just C.K., 2007. Halophilic, thermophilic, and psychrophilic Archaea: Cel­lular and molecular adaptations and potential applications. JYI, 17(4).
  • Zhang L.M., Offre R., He J.Z., Verhamme D.T., Nicol G.W., Prosser J.I., 2010. Autotrophic am­monia oxidation by soil thaumarchaea. PNAS, 107(40), 17240-17245.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-42b9ec23-91ef-4eaa-8d7d-7f05d2d45156
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.