PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 2 |

Tytuł artykułu

Prion protein and its role in signal transduction

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrPSc). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrPC) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the “protein-only” hypothesis for the first time, considerable effort has been put into defining the role played by PrPC in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrPC in signal transduction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.209-230,fig.,ref.

Twórcy

autor
  • Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, E 303 Chicago Ave, Chicago, IL 60611, USA

Bibliografia

  • 1. Gajdusek, D.C. Unconventional viruses and the origin and disappearance of kuru. Science 197 (1977) 943-960.
  • 2. Prusiner, S.B. Molecular structure, biology, and genetics of prions. Adv. Virus. Res. 35 (1988) 83-136.
  • 3. Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R.J. and Cohen, F.E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90 (1993) 10962-10966.
  • 4. Benetti, F. and Legname, G. De novo mammalian prion synthesis. Prion 3 (2009) 213-219.
  • 5. Cohen, F.E., Pan, K.M., Huang, Z., Baldwin, M., Fletterick, R.J. and Prusiner, S.B. Structural clues to prion replication. Science 264 (1994) 530-531.
  • 6. Prusiner, S.B., Groth, D.F., Bolton, D.C., Kent, S.B. and Hood, L.E. Purification and structural studies of a major scrapie prion protein. Cell 38 (1984) 127-134.
  • 7. Oesch, B., Westaway, D., Wälchli, M., McKinley, M.P., Kent, S.B., Aebersold, R., Barry, R.A., Tempst, P., Teplow, D.B., Hood, L.E., Prusiner, S.B. and Weissmann, C. A cellular gene encodes scrapie PrP 27-30 protein. Cell 40 (1985) 735-746.
  • 8. Gabriel, J.M., Oesch, B., Kretzschmar, H., Scott, M. and Prusiner, S.B. Molecular cloning of a candidate chicken prion protein. Proc. Natl. Acad. Sci. USA 89 (1992) 9097-9101.
  • 9. Schatzl, H.M., Da Costa, M., Taylor, L., Cohen, F.E. and Prusiner, S.B. Prion protein gene variation among primates. J. Mol. Biol. 245 (1995) 362-374.
  • 10. Basler, K., Oesch, B., Scott, M., Westaway, D., Wälchli, M., Groth, D.F., McKinley, M.P., Prusiner, S.B. and Weissmann, C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46 (1986) 417-428.
  • 11. Kretzschmar, H.A., Prusiner, S.B., Stowring, L.E. and DeArmond, S.J. Scrapie prion proteins are synthesized in neurons. Am. J. Pathol. 122 (1986) 1-5.
  • 12. Viles, J.H., Cohen, F.E., Prusiner, S.B., Goodin, D.B., Wright, P.E. and Dyson, H.J. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc. Natl. Acad. Sci. USA 96 (1999) 2042-2047.
  • 13. Zahn, R., Liu, A., Luhrs, T., Riek, R., von Schroetter, C., Garcia, F.L., Billeter, M., Calzolai, L., Wider, G. and Wüthrich, K. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97 (2000) 145-150.
  • 14. Stahl, N., Baldwin, M.A., Burlingame, A.L. and Prusiner, S.B. Identification of glycoinositol phospholipid linked and truncated forms of the scrapie prion protein. Biochemistry 29 (1990) 8879-8884.
  • 15. Vey, M., Pilkuhn, S., Wille, H., Nixon, R., DeArmond, S.J., Smart, E.J., Anderson, R.G.W., Taraboulos, A. and Prusiner, S.B. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Natl. Acad. Sci. USA 93 (1996) 14945-14949.
  • 16. Naslavsky, N., Stein, R., Yanai, A., Friedlander, G. and Taraboulos, A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J. Biol. Chem. 272 (1997) 6324-6331.
  • 17. Shyng, S.L., Huber, M.T. and Harris, D.A. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem. 268 (1993) 15922-15928.
  • 18. Anderson, R.G. The caveolae membrane system. Annu. Rev. Biochem. 67 (1998) 199-225.
  • 19. Taylor, D.R. and Hooper, N.M. The prion protein and lipid rafts. Mol. Membr. Biol. 23 (2006) 89-99.
  • 20. Borchelt, D.R., Taraboulos, A. and Prusiner, S.B. Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem. 267 (1992) 16188-16199.
  • 21. Didonna, A., Vaccari, L., Bek, A. and Legname, G. Infrared microspectroscopy: a multiple-screening platform for investigating singlecell biochemical perturbations upon prion infection. ACS Chem. Neurosci. 2 (2011) 160-174.
  • 22. Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H.P., DeArmond, S.J., Prusiner, S.B., Aguet, M. and Weissmann, C. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356 (1992) 577-582.
  • 23. Manson, J.C., Clarke, A.R., Hooper, M.L., Aitchison, L., McConnell, I. and Hope, J. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8 (1994) 121-127.
  • 24. Tobler, I., Gaus, S.E., Deboer, T., Achermann, P., Fischer, M., Rülicke, T., Moser, M., Oesch, B., McBride, P.A. and Manson, J.C. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380 (1996) 639-642.
  • 25. Coitinho, A.S., Roesler, R., Martins, V.R., Brentani, R.R. and Izquierdo, I. Cellular prion protein ablation impairs behavior as a function of age. Neuroreport 14 (2003) 1375-1379.
  • 26. Criado, J.R., Sánchez-Alavez, M., Conti, B., Giacchino, J.L., Wills, D.N., Henriksen, S.J., Race, R., Manson, J.C., Chesebro, B. and Oldstone, M.B. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol. Dis. 19 (2005) 255-265.
  • 27. Sakaguchi, S., Katamine, S., Nishida, N., Moriuchi, R., Shigematsu, K., Sugimoto, T., Nakatani, A., Kataoka, Y., Houtani, T., Shirabe, S., Okada, H., Hasegawa, S., Miyamoto, T. and Noda, T. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380 (1996) 528-531.
  • 28. Moore, R.C., Lee, I.Y., Silverman, G.L., Harrison, P.M., Strome, R., Heinrich, C., Karunaratne, A., Pasternak, S.H., Chishti, M.A., Liang, Y., Mastrangelo, P., Wang, K., Smit, A.F., Katamine, S., Carlson, G.A., Cohen, F.E., Prusiner, S.B., Melton, D.W., Tremblay, P., Hood, L.E. and Westaway, D. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J. Mol. Biol. 292 (1999) 797-817.
  • 29. Didonna, A., Sussman, J., Benetti, F. and Legname, G. The role of Bax and caspase-3 in doppel-induced apoptosis of cerebellar granule cells. Prion 6 (2012) 309-316.
  • 30. Mallucci, G.R., Ratte, S., Asante, E.A., Linehan, J., Gowland, I., Jefferys, J.G. and Collinge, J. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21 (2002) 202-210.
  • 31. Richt, J.A., Kasinathan, P., Hamir, A.N., Castilla, J., Sathiyaseelan, T., Vargas, F., Sathiyaseelan, J., Wu, H., Matsushita, H., Koster, J., Kato, S., Ishida, I., Soto, C., Robl, J.M. and Kuroiwa, Y. Production of cattle lacking prion protein. Nat. Biotechnol. 25 (2007) 132-138.
  • 32. Yu, G., Chen, J., Xu, Y., Zhu, C., Yu, H., Liu, S., Sha, H., Chen, J., Xu, X., Wu, Y., Zhang, A., Ma, J. and Cheng, G. Generation of goats lacking prion protein. Mol. Reprod. Dev. 76 (2009) 3.
  • 33. Bueler, H., Aguzzi, A., Sailer, A., Greiner, R.A., Autenried, P., Aguet, M. and Weissmann, C. Mice devoid of PrP are resistant to scrapie. Cell 73 (1993) 1339-1347.
  • 34. Malaga-Trillo, E., Solis, G.P., Schrock, Y., Geiss, C., Luncz, L., Thomanetz, V. and Stuermer, C.A. Regulation of embryonic cell adhesion by the prion protein. PLOS Biol. 7 (2009) e55.
  • 35. Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D. and Kretzschmar, H. The cellular prion protein binds copper in vivo. Nature 390 (1997) 684-687.
  • 36. Brown, D.R., Clive, C. and Haswell, S.J. Antioxidant activity related to copper binding of native prion protein. J. Neurochem. 76 (2001) 69-76.
  • 37. Tobler, I., Deboer, T. and Fischer, M. Sleep and sleep regulation in normal and prion protein-deficient mice. J. Neurosci. 17 (1997) 1869-1879.
  • 38. Le Pichon, C.E., Valley, M.T., Polymenidou, M., Chesler, A.T., Sagdullaev, B.T., Aguzzi, A. and Firestein, S. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat. Neurosci. 12 (2009) 60-69.
  • 39. Bremer, J., Baumann, F., Tiberi, C., Wessig, C., Fischer, H., Schwarz, P., Steele, A.D., Toyka, K.V., Nave, K.A., Weis, J. and Aguzzi, A. Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci. 13 (2010) 310-318.
  • 40. Zhang, C.C., Steele, A.D., Lindquist, S. and Lodish, H.F. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl. Acad. Sci. USA 103 (2006) 2184-2189.
  • 41. Isaacs, J.D., Jackson, G.S. and Altmann, D.M. The role of the cellular prion protein in the immune system. Clin. Exp. Immunol. 146 (2006) 1-8.
  • 42. Shmerling, D., Hegyi, I., Fischer, M., Blättler, T., Brandner, S., Götz, J., Rülicke, T., Flechsig, E., Cozzio, A., von Mering, C., Hangartner, C., Aguzzi, A. and Weissmann, C. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93 (1998) 203-214.
  • 43. Simons, K. and Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1 (2000) 31-39.
  • 44. Pawson, T. Protein modules and signalling networks. Nature 373 (1995) 573-580.
  • 45. Aguzzi, A., Baumann, F. and Bremer, J. The prion's elusive reason for being. Annu. Rev. Neurosci. 31 (2008) 439-477.
  • 46. Schmitt-Ulms, G., Legname, G., Baldwin, M.A., Ball, H.L., Bradon, N., Bosque, P.J., Crossin, K.L., Edelman, G.M., DeArmond, S.J., Cohen, F.E. and Prusiner, S.B. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314 (2001) 1209-1225.
  • 47. Gauczynski, S., Peyrin, J.M., Haïk, S., Leucht, C., Hundt, C., Rieger, R., Krasemann, S., Deslys, J.P., Dormont, D., Lasmézas, C.I. and Weiss, S. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20 (2001) 5863-5875.
  • 48. Graner, E., Mercadante, A.F., Zanata, S.M., Forlenza, O.V., Cabral, A.L., Veiga, S.S., Juliano, M.A., Roesler, R., Walz, R., Minetti, A., Izquierdo, I., Martins, V.R. and Brentani, R.R. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res. Mol. Brain Res. 76 (2000) 85-92.
  • 49. Martins, V.R., Graner, E., Garcia-Abreu, J., de Souza, S.J., Mercadante, A.F., Veiga, S.S., Zanata, S.M., Neto, V.M. and Brentani, R.R. Complementary hydropathy identifies a cellular prion protein receptor. Nat. Med. 3 (1997) 1376-1382.
  • 50. Zanata, S.M., Lopes, M.H., Mercadante, A.F., Hajj, G.N.M., Chiarini, L.B., Nomizo, R., Freitas, A.R.O., Cabral, A.L.B., Lee, K.S., Juliano, M.A., de Oliveira, E., Jachieri, S.G., Burlingame, A., Huang, L., Linden, R., Brentani, R.R. and Martins, V.R. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21 (2002) 3307-3316.
  • 51. Rutishauser, D., Mertz, K.D., Moos, R., Brunner, E., Rulicke, T., Calella, A.M. and Aguzzi, A. The comprehensive native interactome of a fully functional tagged prion protein. PLOS One 4 (2009) e4446.
  • 52. Lauren, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. and Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457 (2009) 1128-1132.
  • 53. Kessels, H.W., Nguyen, L.N., Nabavi, S. and Malinow, R. The prion protein as a receptor for amyloid-beta. Nature 466 (2010) E3-4; discussion E4-5.
  • 54. Balducci, C., Beeg, M., Stravalaci, M., Bastone, A., Sclip, A., Biasini, E., Tapella, L., Colombo, L., Manzoni, C., Borsello, T., Chiesa, R., Gobbi, M., Salmona, M. and Forloni, G. Synthetic amyloid-beta oligomers impair longterm memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 107 (2010) 2295-2300.
  • 55. Calella, A.M., Farinelli, M., Nuvolone, M., Mirante, O., Moos, R., Falsig, J., Mansuy, I.M. and Aguzzi, A. Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol. Med. 2 (2010) 306-314.
  • 56. Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J.L., Lehmann, S., Launay, J.M. and Kellermann, O. Signal transduction through prion protein. Science 289 (2000) 1925-1928.
  • 57. Yeatman, T.J. A renaissance for SRC. Nat. Rev. Cancer 4 (2004) 470-480.
  • 58. Beggs, H.E., Soriano, P. and Maness, P.F. NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J. Cell Biol. 127 (1994) 825-833.
  • 59. Santuccione, A., Sytnyk, V., Leshchyns'ka, I. and Schachner, M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol. 169 (2005) 341-354.
  • 60. Kanaani, J., Prusiner, S.B., Diacovo, J., Baekkeskov, S. and Legname, G. Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J. Neurochem. 95 (2005) 1373-1386.
  • 61. Schwarz, A., Burwinkel, M., Riemer, C., Schultz, J. and Baier, M. Unchanged scrapie pathology in brain tissue of tyrosine kinase Fyn-deficient mice. Neurodegener. Dis. 1 (2004) 266-268.
  • 62. Nixon, R.R. Prion-associated increases in Src-family kinases. J. Biol. Chem. 280 (2005) 2455-2462.
  • 63. Gyllberg, H., Lofgren, K., Lindegren, H. and Bedecs, K. Increased Src kinase level results in increased protein tyrosine phosphorylation in scrapieinfected neuronal cell lines. FEBS Lett. 580 (2006) 2603-2608.
  • 64. Didonna, A. and Legname, G. Aberrant ERK 1/2 complex activation and localization in scrapie-infected GT1-1 cells. Mol. Neurodegener. 5 (2010) 29.
  • 65. Um, J.W., Nygaard, H.B., Heiss, J.K., Kostylev, M.A., Stagi, M., Vortmeyer, A., Wisniewski, T., Gunther, E.C. and Strittmatter, S.M. Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 15 (2012) 1227-1235.
  • 66. Schneider, B., Mutel, V., Pietri, M., Ermonval, M., Mouillet-Richard, S. and Kellermann, O. NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 100 (2003) 13326-13331.
  • 67. Suganuma, T. and Workman, J.L. MAP kinases and histone modification. J. Mol. Cell. Biol. 34 (2010) 1543-1551.
  • 68. Lopes, M.H., Hajj, G.N., Muras, A.G., Mancini, G.L., Castro, R.M., Ribeiro, K.C., Brentani, R.R., Linden, R. and Martins, V.R. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci. 25 (2005) 11330-11339.
  • 69. Pietri, M., Caprini, A., Mouillet-Richard, S., Pradines, E., Ermonval, M., Grassi, J., Kellermann, O. and Schneider, B. Overstimulation of PrPC signaling pathways by prion peptide 106-126 causes oxidative injury of bioaminergic neuronal cells. J. Biol. Chem. 281 (2006) 28470-28479.
  • 70. Marella, M., Gaggioli, C., Batoz, M., Deckert, M., Tartare-Deckert, S. and Chabry, J. Pathological prion protein exposure switches on neuronal mitogen-activated protein kinase pathway resulting in microglia recruitment. J. Biol. Chem. 280 (2005) 1529-1534.
  • 71. Lee, H.P., Jun, Y.C., Choi, J.K., Kim, J.I., Carp, R.I. and Kim, Y.S. Activation of mitogen-activated protein kinases in hamster brains infected with 263K scrapie agent. J. Neurochem. 95 (2005) 584-593.
  • 72. Carimalo, J., Cronier, S., Petit, G., Peyrin, J.M., Boukhtouche, F., Arbez, N., Lemaigre-Dubreuil, Y., Brugg, B. and Miquel, M.C. Activation of the JNKc-Jun pathway during the early phase of neuronal apoptosis induced by PrP106-126 and prion infection. Eur. J. Neurosci. 21 (2005) 2311-2319.
  • 73. Thellung, S., Villa, V., Corsaro, A., Pellistri, F., Venezia, V., Russo, C., Aceto, A., Robello, M. and Florio, T. ERK1/2 and p38 MAP kinases control prion protein fragment 90-231-induced astrocyte proliferation and microglia activation. Glia 55 (2007) 1469-1485.
  • 74. Brown, D.R., Schulz-Schaeffer, W.J., Schmidt, B. and Kretzschmar, H.A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146 (1997) 104-112.
  • 75. Nordstrom, E.K., Luhr, K.M., Ibanez, C. and Kristensson, K. Inhibitors of the mitogen-activated protein kinase kinase 1/2 signaling pathway clear prion-infected cells from PrPSc. J. Neurosci. 25 (2005) 8451-8456.
  • 76. Uppington, K.M. and Brown, D.R. Resistance of cell lines to prion toxicity aided by phospho-ERK expression. J. Neurochem. 105 (2008) 842-852.
  • 77. Pidoux, G. and Tasken, K. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. J. Mol. Endocrinol. 44 (2010) 271-284.
  • 78. Howe, A.K. Cross-talk between calcium and protein kinase A in the regulation of cell migration. Curr. Opin. Cell Biol. 23 (2011) 554-561.
  • 79. Chiarini, L.B., Freitas, A.R., Zanata, S.M., Brentani, R.R., Martins, V.R. and Linden, R. Cellular prion protein transduces neuroprotective signals. EMBO J. 21 (2002) 3317-3326.
  • 80. Coitinho, A.S., Freitas, A.R., Lopes, M.H., Hajj, G.N., Roesler, R., Walz, R., Rossato, J.I., Cammarota, M., Izquierdo, I., Martins, V.R. and Brentani, R.R. The interaction between prion protein and laminin modulates memory consolidation. Eur. J. Neurosci. 24 (2006) 3255-3264.
  • 81. Kang, J.H., Toita, R., Kim, C.W. and Katayama, Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol. Adv. 30 (2012) 1662-1672.
  • 82. Zhang, B. and Xia, C. 12-O-tetradecanoylphorbol-1, 3-acetate induces the negative regulation of protein kinase B by protein kinase Calpha during gastric cancer cell apoptosis. Cell. Mol. Biol. Lett. 15 (2010) 377-394.
  • 83. Mazzoni, I.E., Ledebur, H.C.,Jr., Paramithiotis, E. and Cashman, N. Lymphoid signal transduction mechanisms linked to cellular prion protein. Biochem. Cell. Biol. 83 (2005) 644-653.
  • 84. Botto, L., Masserini, M., Cassetti, A. and Palestini, P. Immunoseparation of prion protein-enriched domains from other detergent-resistant membrane fractions, isolated from neuronal cells. FEBS Lett. 557 (2004) 143-147.
  • 85. Rodriguez, A., Martin, M., Albasanz, J.L., Barrachina, M., Espinosa, J.C., Torres, J.M. and Ferrer, I. Group I mGluR signaling in BSE-infected bovinePrP transgenic mice. Neurosci. Lett. 410 (2006) 115-120.
  • 86. Bartholomeusz, C. and Gonzalez-Angulo, A.M. Targeting the PI3K signaling pathway in cancer therapy. Expert Opin. Ther. Targets 16 (2012) 121-130.
  • 87. Huang, J.G., Xia, C., Zheng, X.P., Yi, T.T., Wang, X.Y., Song, G. and Zhang, B. 17beta-Estradiol promotes cell proliferation in rat osteoarthritis model chondrocytes via PI3K/Akt pathway. Cell. Mol. Biol. Lett. 16 (2011) 564-575.
  • 88. Chen, S., Mange, A., Dong, L., Lehmann, S. and Schachner, M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol. Cell. Neurosci. 22 (2003) 227-233.
  • 89. Weise, J., Sandau, R., Schwarting, S., Crome, O., Wrede, A., SchulzSchaeffer, W., Zerr, I. and Bahr, M. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37 (2006) 1296-1300.
  • 90. Weise, J., Doeppner, T.R., Muller, T., Wrede, A., Schulz-Schaeffer, W., Zerr, I., Witte, O.W. and Bahr, M. Overexpression of cellular prion protein alters postischemic Erk1/2 phosphorylation but not Akt phosphorylation and protects against focal cerebral ischemia. Restor. Neurol. Neurosci. 26 (2008) 57-64.
  • 91. Vassallo, N., Herms, J., Behrens, C., Krebs, B., Saeki, K., Onodera, T., Windl, O. and Kretzschmar, H.A. Activation of phosphatidylinositol 3- kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun. 332 (2005) 75-82.
  • 92. Schmalzbauer, R., Eigenbrod, S., Winoto-Morbach, S., Xiang, W., Schutze, S., Bertsch, U. and Kretzschmar, H.A. Evidence for an association of prion protein and sphingolipid-mediated signaling. J. Neurochem. 106 (2008) 1459-1470.
  • 93. Seo, J.S., Seol, J.W., Moon, M.H., Jeong, J.K., Lee, Y.J. and Park, S.Y. Hypoxia protects neuronal cells from human prion protein fragment-induced apoptosis. J. Neurochem. 112 (2010) 715-722.
  • 94. Roffe, M., Beraldo, F.H., Bester, R., Nunziante, M., Bach, C., Mancini, G., Gilch, S., Vorberg, I., Castilho, B.A., Martins, V.R. and Hajj, G.N. Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc. Natl. Acad. Sci. USA 107 (2010) 13147-13152.
  • 95. Munaron, L. and Scianna, M. Multilevel complexity of calcium signaling: Modeling angiogenesis. World J. Biol. Chem. 3 (2012) 121-126. 96. Peggion, C., Bertoli, A. and Sorgato, M.C. Possible role for Ca2+ in the pathophysiology of the prion protein? Biofactors 37 (2011) 241-249.
  • 97. Colling, S.B., Collinge, J. and Jefferys, J.G. Hippocampal slices from prion protein null mice: disrupted Ca(2+)-activated K+ currents. Neurosci. Lett. 209 (1996) 49-52.
  • 98. Herms, J.W., Korte, S., Gall, S., Schneider, I., Dunker, S. and Kretzschmar, H.A. Altered intracellular calcium homeostasis in cerebellar granule cells of prion protein-deficient mice. J. Neurochem. 75 (2000) 1487-1492.
  • 99. Herms, J.W., Tings, T., Dunker, S. and Kretzschmar, H.A. Prion protein affects Ca2+-activated K+ currents in cerebellar purkinje cells. Neurobiol. Dis. 8 (2001) 324-330.
  • 100.Fuhrmann, M., Bittner, T., Mitteregger, G., Haider, N., Moosmang, S., Kretzschmar, H. and Herms, J. Loss of the cellular prion protein affects the Ca2+ homeostasis in hippocampal CA1 neurons. J. Neurochem. 98 (2006) 1876-1885.
  • 101.Whatley, S.A., Powell, J.F., Politopoulou, G., Campbell, I.C., Brammer, M.J. and Percy, N.S. Regulation of intracellular free calcium levels by the cellular prion protein. Neuroreport 6 (1995) 2333-2337.
  • 102.Korte, S., Vassallo, N., Kramer, M.L., Kretzschmar, H.A. and Herms, J. Modulation of L-type voltage-gated calcium channels by recombinant prion protein. J. Neurochem. 87 (2003) 1037-1042.
  • 103.Powell, A.D., Toescu, E.C., Collinge, J. and Jefferys, J.G. Alterations in Ca2+-buffering in prion-null mice: association with reduced afterhyperpolarizations in CA1 hippocampal neurons. J. Neurosci. 28 (2008) 3877-3886.
  • 104.Lazzari, C., Peggion, C., Stella, R., Massimino, M.L., Lim, D., Bertoli, A. and Sorgato, M.C. Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J. Neurochem. 116 (2011) 881-890.
  • 105.Mattson, M.P. Calcium and neurodegeneration. Aging Cell 6 (2007) 337-350.
  • 106.Kristensson, K., Feuerstein, B., Taraboulos, A., Hyun, W.C., Prusiner, S.B. and DeArmond, S.J. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology 43 (1993) 2335-2341.
  • 107.Barrow, P.A., Holmgren, C.D., Tapper, A.J. and Jefferys, J.G. Intrinsic physiological and morphological properties of principal cells of the hippocampus and neocortex in hamsters infected with scrapie. Neurobiol. Dis. 6 (1999) 406-423.
  • 108.Johnston, A.R., Fraser, J.R., Jeffrey, M. and MacLeod, N. Alterations in potassium currents may trigger neurodegeneration in murine scrapie. Exp. Neurol. 151 (1998) 326-333.
  • 109.Florio, T., Thellung, S., Amico, C., Robello, M., Salmona, M., Bugiani, O., Tagliavini, F., Forloni, G. and Schettini, G. Prion protein fragment 106-126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J. Neurosci. Res. 54 (1998) 341-352.
  • 110.Thellung, S., Florio, T., Villa, V., Corsaro, A., Arena, S., Amico, C., Robello, M., Salmona, M., Forloni, G., Bugiani, O., Tagliavini, F. and Schettini, G. Apoptotic cell death and impairment of L-type voltagesensitive calcium channel activity in rat cerebellar granule cells treated with the prion protein fragment 106-126. Neurobiol. Dis. 7 (2000) 299-309.
  • 111.Sandberg, M.K., Wallen, P., Wikstrom, M.A. and Kristensson, K. Scrapieinfected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (Ca(v) 2.2) which is ameliorated by quinacrine treatment. Neurobiol. Dis. 15 (2004) 143-151.
  • 112.Torres, M., Castillo, K., Armisen, R., Stutzin, A., Soto, C. and Hetz, C. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLOS One 5 (2010) e15658.
  • 113.Gray, F., Adle-Biassette, H., Chretien, F., Ereau, T., Delisle, M.B. and Vital, C. Neuronal apoptosis in human prion diseases. Bull. Acad. Natl. Med. 183 (1999) 305-320; discussion 320-301.
  • 114.Ojcius, D.M., Delarbre, C., Kourilsky, P. and Gachelin, G. MHC and MHCrelated proteins as pleiotropic signal molecules. FASEB J. 16 (2002) 202- 206.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-42612636-495d-420a-8eba-22d0fd50c5d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.