PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 09 |

Tytuł artykułu

Plant ionomics: a newer approach to study mineral transport and its regulation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Up to two-thirds of the world population is at risk of deficiency in one or more essential mineral elements. In order to overcome deficiency disorders of mineral nutrients, biofortification approach in crops is an absolute requirement to eliminate the hidden hunger. Hence, the aim of crop biofortification is shifting from food security to nutritional security. In this context, ionomics becomes essential to identify potential gene(s) responsible for the uptake, transport, and storage of ions in plants. It involves the measurement of elemental composition of an organism and change in their composition in relation to physiological, developmental, environmental, and genetic factors. It renders the functional analysis of genes and gene networks that directly or indirectly affect the whole ionome. The present review deals with the study of ionome with special reference to different types of ionic interactions, quantifications, and gene identification.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

09

Opis fizyczny

p.2641-2653,fig.,ref.

Twórcy

autor
  • Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
autor
  • Division of Crop Protection, Central Institute for Subtropical Horticulture, Lucknow 227107, Uttar Pradesh, India
autor
  • Department of Agriculture Biotechnology, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Modipuram, Meerut 250110, Uttar Pradesh, India
autor
  • Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India

Bibliografia

  • Adebooye OC, Schmitz-Eiberger M, Lankes C, Noga GJ (2010) Inhibitory effects of sub-optimal root zone temperature on leaf bioactive components, photosystem II (PS II) and minerals uptake in Trichosanthes cucumerina L. Cucurbitaceae. Acta Physiol Plant 32:67–73
  • Akbaba U, Sahin Y, Türkez H (2012) Comparison of element contents in haricot beans grown under organic and conventional farming regimes for human nutrition and health. Acta Sci Pol-Hortorum Cultus 11(2):117–125
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York
  • ApaydınG, Aylıkc V, Cengiz E, Saydam M, KüpN,Tıraşoğlu E (2010) Analysis of metal contents of seaweed (Ulva lactuca) from Istanbul, Turkey by EDXRF. Turkish J Fish Aquat Sci 10:215–220
  • Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156
  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386
  • Baxter I (2010) Ionomics: the functional genomics of elements. Brief Funct Genomics 9:149–156
  • Baxter I, Dilkes B (2012) Elemental profiles reflect plant adaptations to the environment. Science 336:1661–1663
  • Baxter I, Hermans C, Lahner B et al (2012) Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE 7:e35121
  • Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H (2006) Handbook of practical X-Ray fluorescence analysis. Springer, New York
  • Bentsink L, Yuan K, Koorneef M, Vreugdenhil D (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Genet 106:1234–1243
  • Bertoldi D, Larcher R, Bertamini M, Otto S, Concheri G, Nicolini G (2011) Accumulation and distribution pattern of macro, micro and trace elements in Vitis vinifera L. cv. Chardonnay berries. J Agric Food Chem 59(13):7224–7236
  • Borevitz JO, Nordborg M (2003) The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol 132:718–725
  • Borghi M, Rus A, Salt DE (2011) Loss-of-function of constitutive expresser of pathogenesis related Genes5 affects potassium homeostasis in Arabidopsis thaliana. PLoS ONE 6(10):e26360
  • Burnay M, Crambert G, Kharoubi-Hess S, Geering K, Horisberger JD (2003) Electrogenicity of Na, K- and H, K-ATPase activity and presence of a positively charged amino acid in the fifth transmembrane segment. J Biol Chem 278:19237–19244
  • Chen Z, Watanabe T, Shinano T, Okazaki K, Osaki M (2008) Ionomic study of Lotus japonica. New Phytol 181(4):795–801
  • Chen Z, Shinano T, Ezawa T, Wasaki J, Kimura K, Osaki M, Zhu Y (2009) Elemental interconnections in Lotus japonicus: a systematic study of the affects of elements additions on different natural variants. Soil Sci Plant Nutr 55(1):91–101
  • Cizdziel J, Bu K, Nowinski P (2011) Determination of elements in situ in green leaves by laser ablation ICP-MS using pressed reference materials for calibration. Anal Methods 4:564–569
  • Clárk RB (1983) Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant Soil 72(2–3):175–196
  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486
  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357
  • Delhaize E, Randall PJ, Wallace PA, Pinkerton A (1993) Screening Arabidopsis for mutants in mineral nutrition. Plant Soil 155(1): 131–134
  • Diego HS, Henning R, Ute K, Michael KU, Joachim K (2008) Metabolome–ionome–biomass interactions: what can we learn about salt stress by multiparallel phenotyping. Plant Signal Behav 3(8):598–600
  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel ironregulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci 93:5624–5628
  • Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127
  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 8:1157–1161
  • Fleet JC, Replogle R, Salt DE (2011) Systems genetics of mineral metabolism. J Nutr 141:520–525
  • Galinha C, Anawar HM, Freitas MC et al (2011) Neutron activation analysis of wheat samples. Appl Radiat Isot 69(11):1596–1604
  • Ghandilyan A, Ilk N, Hanhart C et al (2009) A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. J Exp Bot 60(5):1409–1425
  • Gilroy S, Jones DL (2000) From form to function: development and nutrient uptake in root hairs. Trends Plant Sci 5:56–60
  • Grattan SR, Grieve CM (1998) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157
  • Grusak MA, Della Penna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161
  • Hacker SD, Mark DB (1995) Morphological and physiological consequences of a positive plant interaction. Ecology 76:2165–2175
  • Hemphill DD (1972) Availability of trace elements to plants with respect to soil–plant interaction. Ann N Y Acad Sci 199:46–61
  • Hevesy G, Levi H (1936) Action of slow neutrons on rare earth elements. Nature 137:185
  • Hirochika H, Guiderdoni E, An G et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334
  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133
  • Hoekenga OA, Maron LG, Pin˜eros MA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743
  • Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32(5):626–638
  • Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 99:11969–11974
  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44
  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego
  • Lahner B, Gong J, Mahmoudian M et al (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21(10):1215–1221
  • Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci 104(40): 15959–15964
  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analysis of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615
  • Li G, Nunes L, Wang Y, Williams PN, Zheng M, Zhang Q, Zhu Y (2013) Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale, China. J Environ Sci 25(1):144–154
  • Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358
  • Lvov B (2005) Fifty years of atomic absorption spectroscopy. J Anal Chem 60:382–392
  • Marschner P (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London
  • Martienssen RA (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci USA 95:2021–2026
  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans) genes. Plant Physiol 107:679–685
  • Medved’ J, Streško V, Kubová J, Chmielewská E (2003) Evaluation of atomic spectrometry methods for determination of some heavy metals in soils, soil extracts, plants, and biota. Chem Pap 57(3):169–171
  • Nadkarni RA, Morrison GH (1973) Multi-element instrumental neutron activation analysis of biological materials. Anal Chem 45:1957–1960
  • Nelson MT (1986) Interactions of divalent cations with single calcium channels from brain synaptosomes. J Gen Physiol 87: 201–222
  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153
  • Ohkama-Ohtsu N, Wasaki J (2010) Recent Progress in Plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51(8):1255–1264
  • Patrick JW, Offler CE (2001) Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52:551–564
  • Payne KA, Bowen HC, Hammond JP et al (2004) Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytol 162:535–548
  • Prasad MN, Strzalka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer
  • Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Mary LG (2012) The Role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol 158:352–362
  • Qin Z, Caruso JA, Lai B, Matusch A, Becker JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37
  • Quadir QF, Watanabe T, Chen Z, Osaki M, Shinano T (2011) Ionomic response of Lotus japonicus to different root-zone temperatures. Soil Sci Plant Nutr 57:221–232
  • Rauh L, Basten C, Buckler S (2002) Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theor Appl Genet 104:743–750
  • Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48
  • Remeteiová D, Ružicková S, Matherny M, Dirner V (2011) FAAS method and the extraction process applied for fractionation analysis of gravitation dust sediments and their evaluation. J Chem Metrol 5(1):1–10
  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+- calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608
  • Sallaud C, Gay C, Larmande P et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464
  • Salt DE (2004) Update on ionomics. Plant Physiol 136:2451–2456
  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733
  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M (2003) Aramemnon, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26
  • Sha Z, Oka N, Watanabe T, Tampubolon BD, Okazaki K, Osaki M, Shinano T (2012) Ionome of soybean seed affected by previous cropping with mycorrhizal plant and manure application. J Agric Food Chem 60:9543–9552
  • Šmit Ž (2005) Recent developments of material analysis with PIXE. Nucl Instrum Methods Phys Res B 240:258–264
  • Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: A review. Afr J Food Sci 4(5):200-222
  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JDG, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810
  • Török P, Žemberyová M (2012) Direct solid sampling electrothermal atomic absorption spectrometric determination of toxic and potentially toxic elements in certified reference materials of brown coal fly ash. Spectrochim Acta Part B At Spectrosc 71–72:80–85
  • Tulchinsky TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32(1):243–255
  • Vallapragada VV, Inti G, Ramulu JS (2011) A validated Inductively Coupled Plasma–Optical Emission Spectrometry (ICP–OES) method to estimate free calcium and phosphorus in in vitro phosphate binding study of eliphos tablets. Am J Anal Chem 2:718–725
  • Wheal MS, Fowles TO, Palmer LT (2011) A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP–OES) analysis of plant essential elements. Anal Methods 3(12): 2854–2863
  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182: 49–84
  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7):1073–1080
  • White PJ, Biskup B, Elzenga JTM, Homann U, Thiel G, Wissing F, Maathuis FJ (1999) Advanced patch-clamp techniques and single-channel analysis. J Exp Bot 50:1037–1054
  • White PJ, Broadley MR, Thompson JA, McNicol JW, Crawley MJ, Poulton PR, Johnston AE (2012) Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay experiment. New Phytol 196(1): 101–109
  • Williams L, Salt DE (2009) The plant ionome coming into focus. Curr Opin Plant Biol 12:247
  • Wu C, Li X, Yuan W et al (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35(3):418–427
  • Yang G, Livingston K, Jones R, Klein F (2012) High resolution X-ray diffraction study of single crystal diamond radiators. Phys Status Solidi A 209:1786–1791

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-41aecfad-549e-43c2-b501-b091678f2ae6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.