PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 1 |

Tytuł artykułu

Evidence of the migratory bat, Pipistrellus nathusii, aggregating to the coastlines in the Northern Baltic Sea

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Similar to birds, bats also perform long-distance migration between their breeding and wintering sites. In Northern Europe, migratory bat species are often detected along the coastline of the Baltic Sea particularly during migration seasons in the spring and autumn. In spite of regular monitoring of bat migration at coastal sites, the overall distribution of migratory bats in Northern Europe and variability between sites and seasons are still very poorly known. In this study we used automated bat detectors to compare the activity of migratory bat species between coastal and inland monitoring sites along the west coast of Finland (61.5–61.9°N, 21.3−22.3°E). Our main goal was to test whether the activity of migratory bat species is associated with the coastline or whether these species also occur inland. Of migratory bat species observations, 98.6% were covered by Pipistrellus nathusii, which was detected at all our monitoring sites. The activity of the species decreased rapidly, with increasing distance from the coastline towards inland, indicating a sharp activity gradient along the coastline of the Baltic Sea. Because the activity of P. nathusii occurred in migration season and no similar spatial pattern was detected among sedentary species, our results suggest that the aggregation of P. nathusii at the coastline is related to migration as such rather than regular foraging behavior of this species. Our study has direct implications to the wind power planning in Northern Europe. Based on our study we conclude that the impact of wind power on both migratory (namely P. nathusii) and sedentary bat species (namely Eptesicus nilssonii) should be taken into account in wind power planning and impact mitigation in Northern Europe, especially if new wind farms are located along the coastline of the Baltic Sea. When the turbines are located further inland, more attention in the planning process should however be given to the sedentary bat E. nilssonii.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.127-139,fig.,ref.

Twórcy

autor
  • Brahea Centre, Centre for Maritime Studies, University of Turku, 28101 Pori, Finland
  • Metapopulation Research Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
autor
  • Biodiversity Unit, University of Turku, 20014 Turun yliopisto, Finland

Bibliografia

  • 1. Ahlén, I. 2002. Fladdermöss och fåglar dödade av vindkraftverk. Fauna och Flora, 97(3): 14–21. Google Scholar
  • 2. Ahlén, I., H. J. Baagøe, and L. Bach. 2009. Behavior of Scandinavian bats during migration and foraging at the sea. Journal of Mammalogy, 90: 1318–1323. Google Scholar
  • 3. Aminoff, S. 2014. Vindkraftens inverkan på fladdermöss I Finland — en pilotstudie om undersökningsmetoderna I finländska förhållanden. M.Sci. Thesis, Faculty of Science, University of Helsinki, Helsinki, 62 pp. Google Scholar
  • 4. Amorim, F., H. Rebelo, and L. Rodrigues. 2012. Factors influencing bat activity and mortality at a wind farm in the Mediterranean Region. Acta Chiropterologica, 14: 439–457. Google Scholar
  • 5. Baerwald, E., and R. M. R. Barclay. 2009. Geographic variation in activity and fatality of migratory bats at wind energy facilities. Journal of Mammalogy, 90: 1341–1349. Google Scholar
  • 6. Baerwald, E., and R. M. R. Barclay. 2011. Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. Journal of Wildlife Management, 75: 1103–1114. Google Scholar
  • 7. Barton, K. 2016. Package MuMIn (Multi-Model Inference), version 1.15.6. Available at https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf. Google Scholar
  • 8. Boonman, A., Y. Bar-On, Y. Yovel, and N. Cvikel. 2013. It's not black or white — on the range of vision and echolocation in echolocating bats. Frontiers in Physiology, 4: 158–169. Google Scholar
  • 9. Burnham, K. P., and D. R. Anderson. 2003. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edition. Springer, New York, xxvi + 488 pp. Google Scholar
  • 10. Chistjakov, D. V. 2001. Materials on distribution and ecology of Nathusius'pipistrelle (Pipistrellus nathusii) in the northwest of Russia. Plecotus et al., 4: 51–56. [Not seen, cited in Petersons, 2004]. Google Scholar
  • 11. Ciechanowski, M., A. Jakusz-Gostomska, and M. Żmihorski. 2016. Empty in summer, crowded during migration? Structure of assemblage, distribution pattern and habitat use by bats (Chiroptera: Vespertilionidae) in a narrow, marine peninsula. Mammal Research, 61: 45–55. Google Scholar
  • 12. Corben, C. 2011. AnalookW for bat call analysis using ZCA. Downloaded from http://www.hoarybat.com. Google Scholar
  • 13. Dietz, C., O. Von Helversen, and D. Nill. 2009. Bats of Britain, Europe and Northwest Africa. A & C Black Publishers Ltd., London, 400 pp. Google Scholar
  • 14. Durr, T., and L. Bach. 2004. Bat deaths and wind turbines — a review of current knowledge and of the information available in the database for Germany. Bremer Beiträge für Naturkunde und Naturschutz, 7: 253–264. Google Scholar
  • 15. Eklöf, J. 2003. Vision in echolocating bats. Ph.D. Thesis, Zoology Department, Göteborg University, Göteborg, 107 pp. Google Scholar
  • 16. Flaquer, C., X. Puig-Montserrat, U. Goiti, F. Vidal, A. Curco, and D. Russo. 2009. Habitat selection in Nathusius' pipistrelle (Pipistrellus nathusii): the importance of wetlands. Acta Chiropterologica, 11: 149–155. Google Scholar
  • 17. Fleming, T. H., and P. Eby. 2003. Ecology of bat migration. Pp. 156–208, in Batecology ( T. H. Kunz and M. B. Fenton, eds.). University of Chicago Press, Chicago, xix + 778 pp. Google Scholar
  • 18. Frafjord, K. 2013. Influence of night length on home range size in the northern bat Eptesicus nilssonii. Mammalian Biology, 78: 205–211. Google Scholar
  • 19. Fritzen, N. 2015. KvarkenBats —nya resultat som stöder hypotesen om kvarkenöverskridande fladdermusmigration. OA-Natur, 17: 14–27. Google Scholar
  • 20. Furmankiewicz, J., and M. Kucharska. 2009. Migration of bats along a large river valley in southwestern Poland. Journal of Mammalogy, 90: 1310–1317. Google Scholar
  • 21. FWPA [FINNISH WIND POWER ASSOCIATION]. 2016. Wind power projects in Finland. Published on-line at http://www.tuulivoimayhdistys.fi/en/wind-power-in-finland/industrialwind-power-in-finland. Google Scholar
  • 22. Georkiakakis, P., E. Kret, B. Carcamo, B. Doutau, A. Kafkaletou-Diez, D. Vasilakis, and E. Papadatou. 2012. Bat fatalities at wind farm in north-eastern Greece. Acta Chiropterologica, 14: 459–468. Google Scholar
  • 23. GWEC [Global Wing Energy Council] 2014. Global wind energy outlook. Available at http://www.gwec.net/publications/global-wind-energy-outlook/global-wind-energy-outlook-2014/. Google Scholar
  • 24. Hedenström, A. 2009. Optimal migration strategies in bats. Journal of Mammalogy, 90: 1298–1309. Google Scholar
  • 25. Holland, R. A., I. Borissov, and B. M. Siemers. 2010. The nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proceedings of the National Academy of Sciences of the USA, 107: 6941–6945. Google Scholar
  • 26. Jarzembowski, T. 2003. Migration of the Nathusius' pipistrelle Pipistrellus nathusii (Vespertilionidae) along the Vistula Split. Acta Theriologica, 48: 301–308. Google Scholar
  • 27. Johnson, J. B., J. E. Gates, and N. P. Zegre. 2011. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA. Environmental Monitoring & Assessment, 173: 685–699. Google Scholar
  • 28. Jonasson, K. A., and C. G. Guglielmo. 2016. Sex differences in spring migration timing and body composition of silver-haired bats Lasionycteris noctivagans. Journal of Mammalogy, 97: 1535–1542. Google Scholar
  • 29. Koivunen, S., H. Nukki, and S. Salokangas. 2006. Satakunnan vesistöt: käyttö ja kunnostustarpeet. Pyhäjärvi-instituutin julkaisuja. Sarja B 12. Eura, Finland, 139 pp. Google Scholar
  • 30. Korner-Nievergelt, F., R. Brinkmann, I. Niermann, and O. Behr. 2013. Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models. PLoS ONE, 8: e67997. Google Scholar
  • 31. Kunz, T., A. B. Arnett, W. P. Erickson, A. R. Hoar, G. D. Johnson, R. P. Larkin, M. D. Strickland, R. W. Thresher, and M. D. Tuttle. 2007 Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers of Ecology and Environment, 6: 315–324. Google Scholar
  • 32. Kurvits, T., C. Nellemann, B. Alfthan, A. Kuhl, P. Prokosch, M. Virtue, and J. F. Skaalvik (eds.). 2011. Living planet: connected planet — preventing the end of the world's wildlife migrations through ecological networks. A rapid response assessment. United Nations Environment Programme, GRID-Arendal, 74 pp. Google Scholar
  • 33. Kusch, J., C. Weber, S. Idelberger, and T. Koob. 2004. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zoologica, 53: 113–128. Google Scholar
  • 34. Kuvlesky, W. P., L. A. Brennan, M. L. Morrison, K. K. Boydston, B. M. Ballard, and F. C. Bryant. 2007. Wind energy development and wildlife conservation: challenges and opportunities. Journal of Wildlife Management, 71: 2487–2498. Google Scholar
  • 35. Kyheröinen, E.-M., M. Osara, and T. Stjernberg. 2014. Agreement on the conservation of populations of European bats: national implementation report of Finland. Inf. EUROBATS MoP7.17, 9 pp. Google Scholar
  • 36. López-Roig, M., and J. Serra-Cobo. 2014. Impact of human disturbance, density and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Population Ecology, 56: 471–480. Google Scholar
  • 37. Masing, M., and L. Lutsar. 2006. Hibernation temperatures in seven species of sedentary bats (Chiroptera) in Northeastern Europe. Acta Zoologica Lituanica, 17: 47–55. Google Scholar
  • 38. Masing, M., V. Keppart, L. Lutsar, and K. Lotman. 2008. Action plan for the conservation management of bats 2005–2009. Estonian Theriological Society, Tallinn, 22 pp. Google Scholar
  • 39. Miller, B. W. 2001. A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropterologica, 3: 93–105. Google Scholar
  • 40. Metsänen, T. 2009. Asikkalan Pulkkilanharjun lepakoiden muutonseuranta 2009. Luontoselvitys Metsänen, 10 pp. Google Scholar
  • 41. Naturvårdsverket. 2006. Handlingsprogram för skydd av flad dermusfaunan. Rapport 5546. Naturvårdsverket, Stockholm, Sweden, 27 pp. Google Scholar
  • 42. Northrup, J. M., and G. Wittemyer. 2013. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecology Letters, 16: 112–125. Google Scholar
  • 43. O'Shea, T. J., L. E. Ellison, and T. R. Stanley. 2011, Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus). Journal of Mammalogy, 92: 433–443. Google Scholar
  • 44. Pauza, D. H., and N. Pauziene. 1998. Bats of Lithuania: distribution, status and protection. Mammal Review, 28: 53–68. Google Scholar
  • 45. Peterson, T. S., S. K. Pelletier, S. A. Boyden, and K. S. Watrous. 2014. Offshore acoustic monitoring of bats in the Gulf of Maine. Northeastern Naturalist, 21: 86–107. Google Scholar
  • 46. Petersons, G. 2004. Seasonal migrations of north-eastern populations of Nathusius' bat Pipistrellus nathusii (Chiroptera). Myotis, 41–42: 29–56. Google Scholar
  • 47. Popa-Liseanu, A. G., and C. C. Voigt. 2009. Bats on the move. Journal of Mammalogy, 90: 1283–1289. Google Scholar
  • 48. R CORE TEAM. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Google Scholar
  • 49. Rodrigues, L., L. Bach, M-J. Dubourg-Savage., B. Karapandža, D. Kovač, T. Kervyn, T. Dekker, A. Kepel, P. Bach, J. Collins , et al. 2014. Guidelines for consideration of bats wind farm projects — Revision 2014. EUROBATS Publication Series No. 6 (English version). UNEP/EUROBATS Secretariat, Bonn, Germany, 133 pp. Google Scholar
  • 50. Roscioni, F., D. Russo, M. DI Febbraro, L. Frate, M. L. Carranza, and A. Loy. 2013. Regional-scale modelling of the cumulative impact of wind farms on bats. Biodiversity Conservation, 22: 1821–1835. Google Scholar
  • 51. Russo, D., and G. Jones. 2003. Use of foraging habitat by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography, 26: 197–209. Google Scholar
  • 52. Rydell, J., L. Bach, M-J. Dubourg-Savage, M. Green, L. Rodrigues, and A. Hedenstrom. 2010. Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica, 12: 261–274. Google Scholar
  • 53. Rydell, J., L. Bach, P. Bach, L. G. Diaz, J. Furmankiewicz, N. Hagner-Wahlsten, E-M. Kyheroinen, T. Lilley, M. Masing, M. M. Meyer , et al. 2014. Phenology of migratory bat activity across the Baltic Sea and the south-eastern North Sea. Acta Chiropterologica, 16: 139–147. Google Scholar
  • 54. Rydell, J., W. Bogdanowicz, A. Boonman, S. Pettersson, E. Suchecka, and J. J. Pomorski. 2016. Bats may eat diurnal flies that rest on wind turbines. Mammalian Biology, 81: 331–339. Google Scholar
  • 55. Salvarina, I. 2016. Bats and aquatic habitats: a review of habitat use and anthropogenic impacts. Mammal Review, 46: 131–143. Google Scholar
  • 56. Schnitzler, H.-U., and E. K. V. Kalko. 2001. Echolocation by Insect-Eating Bats. Bioscience, 51: 557–569. Google Scholar
  • 57. Schuster, E., L. Bulling, and J. Koppel. 2015. Consolidating the state of knowledge: a synoptical review of wind energy's wildlife effects. Environmental Management, 56: 300–331. Google Scholar
  • 58. Siivonen, Y., and T. Wermundsen. 2008a. Characteristics of winter roosts of bat species in southern Finland. Mammalia, 72: 50–56. Google Scholar
  • 59. Siivonen, Y., and T. Wermundsen. 2008b. Distribution and foraging habitats of bats in northern Finland: Myotis daubentonii occurs north of the Arctic Circle. Vespertilio, 12: 41–48. Google Scholar
  • 60. Skaug, H., D. Fournier, A. Nielsen, A. Magnusson, and B. Bolker. 2016. glmmADMB: Generalized Linear Mixed Models using ‘AD Model Builder’. R package version 0.8.3.3. Available at http://glmmadmb.r-forge.r-project.org/. Google Scholar
  • 61. Skiba, R. 2009. Europaische Fledermause. Die Neue Brehm Bu cherei, Band 648. Westarp Wissenschaften, Hohenwarsleben, 212 pp. Google Scholar
  • 62. Speakman, J. R., J. Rydell, P. I. Webb, J. P. Hayes, G. C. Hays, I. A. R. Hulbert, and R. M. McDevitt. 2000. Activity patterns of insectivorous bats and birds in northern Scandinavia (69°N), during continuous midsummer daylight. Oikos, 88: 75–86. Google Scholar
  • 63. Šuba, J. 2014. Migrating Nathusius's pipistrelles Pipistrellus nathusii (Chiroptera: Vespertilionidae) optimise flight speed and maintain acoustic contact with the ground. Environmental and Experimental Biology, 12: 7–14. Google Scholar
  • 64. Šuba, J., G. Petersons, and J. Rydell. 2012. Fly-and-forage strategy in the bat Pipistrellus nathusii during autumn migration. Acta Chiropterologica, 14: 379–385. Google Scholar
  • 65. Van Schaik, J., R. Janssen, T. Bocsh, A-J. Haarsma, J. J. A. Dekker, and B. Kranstauber. 2015. Bats swarm where they hibernate: compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS ONE, 10: e0130850. Google Scholar
  • 66. Vaughan, N., G. Jones, and S. Harris. 1997. Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method. Journal of Applied Ecology, 34: 716–730. Google Scholar
  • 67. Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S, 4th edition. Springer Science and Business Media, New York, ix + 495 pp. Google Scholar
  • 68. Voigt, C. C., L. S. Lehnert, G. Petersons, F. Adorf, and L. Bach. 2015. Wildlife and renewable energy: German politics cross migratory bats. European Journal of Wildlife Research, 61: 213–219. Google Scholar
  • 69. Zar, J. H. 1999. Biostatistical analysis, 4th edition. Prentice-Hall, New Jersey, 663 pp. Google Scholar
  • 70. Zuur, A., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effect models and extensions in ecology with R. Statistics for biology and health. Springer, New York, 574 pp. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-418e2e68-69a4-429d-8968-e702420704bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.