PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Complex mechanism of phenol extraction of coal gasification wastewater

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, tri-butyl-phosphate (TBP)-kerosene is used as the extraction solvent to remove phenols from coal gasification wastewater, and the complex mechanism of the extraction is investigated. An effect experiment is conducted to determine the complex structures, the enthalpy change of reaction, and the effect of extraction solvent concentration and temperature on the distribution coefficient. To predict the extraction effect before the experiment, the distribution coefficient mathematical model of phenol extraction is established, which is based on a liquid-liquid extraction model and verified for accuracy by the experiment. The effect experiment result shows that with an increase in concentration of TBP and decrease in temperature, the extraction distribution coefficient increases and further determines the complex structures and the enthalpy change of the reaction. Meanwhile, a comparison of experimental and calculated values in the model experiment result shows that the average relative error of extraction distribution coefficient is 5.56% in different concentrations of TBP and 2.72% in different temperatures. Considering the error of the experiment, this work concludes that the distribution coefficient mathematical model of phenol extraction has a high predictive effect on the distribution coefficient and extraction rate of volatile phenol in actual wastewater.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1105-1113,fig.,ref.

Twórcy

autor
  • Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, China
  • Beijing Research Institute of Coal Chemical, China Coal Research Institute, Beijing, China
autor
  • Beijing Research Institute of Coal Chemical, China Coal Research Institute, Beijing, China
autor
  • Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, China
autor
  • Department of Civil amd Environmental Engineering, Stanford University, Stanford, California, USA

Bibliografia

  • 1. YU Z., CHEN Y., FENG D., QIAN Y.. Process Development, Simulation, and Industrial Implementation of a New Coal-Gasification Wastewater Treatment Installation for Phenol and Ammonia Removal. Ind & Eng Chem Res, 49 (6), 2874, 2010.
  • 2. KOHL A.I., NIELSEN R. Gas Purification, 5th ed.; Gulf Publishing Company: Houston, TX, 1997.
  • 3. WANG Z., XU X., GONG Z., YANG F. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system. J Hazard Mater, 235-236 (20, 78, 2012.
  • 4. MOHAMMADI S., KARGARI A., SANAEEPUR H., ABBASSIAN K., NAJAFI A., MOFARRAH E. Phenol Removal from Industrial Wastewaters: A Short Review. Desalin & Water Treat, 46 (12), 2215, 2015.
  • 5. DOUGLAS C., KING C.J. Solvent extraction of phenols from water. Ind Eng Chem Process Des, 21, 51, 1982.
  • 6. WANG W., HAN H. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater. Bioresource Technol, 103 (1), 95, 2012.
  • 7. KHAKSAR A.M., NAZIF S., TAEBI A., SHAHGHASEMI E. Treatment of phenol in petrochemical wastewater considering turbidity factor by backlight cascade photocatalytic reactor. J Photoch Photobio A, 348, 2017.
  • 8. Li H.Q., HAN H.J., DU M.A., WANG W. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor. J Environ Sci-China, 23, 568, 2011.
  • 9. LI H.Q., HAN H.J., DU M.A., WANG W. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor[J]. Bioresource Technol, 102, 4667, 2011.
  • 10. CHEN Y., WANG Z. Application research status of the chemical process of ammonia / phenol recovery from coal-gasification wastewater. Coal Chem Ind, 41 (4), 44, 2013.
  • 11. FU C.R., QU S.J., DONG W.G., GAO M.L., WANG J.K. Process simulation of extraction and removal of phenol from coal chemical wastewater. Clean Coal Technol, 23 (3), 94, 2017.
  • 12. ZHOU Z.Y., TANG Z.G., CHEN C. Analysis and solution of phenolic water entrainment in the side output in the water tower of phenol recovery section. Coal Chem Ind, 32 (4), 47, 2004.
  • 13. CHEN L., CHENG Y.F. Effect of pH value of wasterwater on phenol removal by extraction. Coal Chem Ind, 35 (4), 38, 2007.
  • 14. MOOKETSI O.I. Evaluation of ozone for the removal of phenolic compounds in wastewater from the merisol plant (Sasolburg). Johannesburg: Degree of Masters of Science, University of Witwatersrand, 2009.
  • 15. GAI H.J., JIANG Y.Y., QIAN Y. Analysis and debottlenecking retrofits for the coal-gasification wastewater treatment process. Chem Eng(China), 35 (8), 57, 2007.
  • 16. QIAN Y., ZHOU Z.Y., CHEN Y. Process retrofit and industrial implementation of phenol and ammonia recovery from coal-gasification wastewater. Ciesc J, 6 (17), 1821, 2010.
  • 17. KING C.J. Seperation process based upon reversible chemical complexation//Rousseau R W.E.d. Handbook of seperation process technology. New York: John Wiley&Sons, 1987.
  • 18. GU M.L, ZHAN J., LIU Y. Dephenolization using Complexation extraction method for treating waste alkaline liquor from an oil refinery. Environ Sci Technol, 29 (11), 31, 2006.
  • 19. ZHANG H.X., CHENG Y.X. Progress of complexation extraction of carboxylic acid dilute solution. AnHui Chem Ind, 40 (2), 3, 2014.
  • 20. ZHAO W.S., SUN Y., FENG W. The treatment of highly concentrated phenol-containing wastewater by complexation extraction. Shandong Chem Ind, 2015.
  • 21. YANG D.L., NING P.G., CAO H.B. Extraction of phenol with primary amine N_(1923). Chinese J Process Eng, 12 (4), 570, 2012.
  • 22. ZHANG L.J., FENG J.Z., YANG C.F., QIAN Y. Extraction-recover process of Phenols from Coal-gasification Wastewater. Environ Chem, 25 (4), 488, 2006.
  • 23. LIU C.Y., LIU L. Study on extraction by chemical complexation used in FCC caustic sludge acidification liquid. Pollut Control Technol, 22 (5), 5, 2009.
  • 24. WU M.L. Determination of uranium in soil by ICP-OES after extracted by TBP. Shandong Chem Ind, 44 (14), 70, 2015.
  • 25. WANG R.C., SUN M., LIU Q.X., MA Y.X., FENG G., XU L., MA X.X. Extraction and GC /MS analysis of phenolic compounds in low temperature coal tar from Northern Shaanxi. J China Coal Soc, 36 (4), 664, 2011.
  • 26. RAVA E., CHIRWA E., ALLISON P., NIEKERK M.V., AUGUSTYN M.P. Removal of hard COD, nitrogenous compounds and phenols from a high-strength coal gasification wastewater stream. Water S A, 41 (4), 441, 2015.
  • 27. YANG C., QIAN Y., ZHANG L., FENG J. Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater. Chem Eng J, 117 (2), 179, 2006.
  • 28. FU X.M., WANG L., DAI S.G. Mechanism Study on the Extraction of Nonylphenol by Ionic Liquids in Water Through IR Spectroscopy and Quantum Chemical Calculation. Spectrosc Spect Anal, 31 (3), 625, 2011.
  • 29. LI D.Z. Analysis on the Factors Influencing Phenol Extraction in Coal Gasification Wastewater. Prog Qual PetroChina Chem Ind, 5, 15, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-41071634-ab00-4b1a-8033-298f153abfe5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.