PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 58 | 4 |

Tytuł artykułu

Complex patterns of population genetic structure of moose, Alces alces , after recent spatial expansion in Poland revealed by sex-linked markers

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In recent years, human activity directly and indirectly influenced the demography of moose in Poland. The species was close to extinction, and only a few isolated populations survived after the Second World War; then, unprecedented demographic and spatial expansions had occurred, possibly generating a very complex pattern of population genetic structure at the present-day margins of the species range in Poland. Over 370 moose from seven populations were collected from Poland, and partial sequences of the mitochondrial control region (mtDNA-cr; 607 bp) were obtained. In addition, the entire mtDNA cytochrome b gene (1,140 bp) and Y-chromosome markers (1,982 bp in total) were studied in a chosen set of individuals. Twelve mtDNA haplotypes that all belonged to the European moose phylogroup were recorded. They could be divided into two distinct clades: Central Europe and the Ural Mountains. The first clade consists of three distinct groups/branches: Biebrza, Polesie, and Fennoscandia. The Biebrza group has experienced spatial and demographic expansion in the recent past. Average genetic differentiation among moose populations in Poland at mtDNA-cr was great and significant (Φ ST = 0.407, p < 0.001). Using mtDNA-cr data, four separate groups of population were recognized using spatial analysis of molecular variance and principal coordinate analysis, including a relict population in Biebrza National Park, a reintroduced Kampinos National Park population, as well as populations that were descendants of moose that colonized Poland from the east (Lithuania, Belarus, and Ukraine) and the north (former East Prussia). Among all the sequenced Y-chromosome markers, polymorphisms were found in the DBY14 marker in three populations only; four haplotypes were recorded in total. No significant differentiation was detected for this Y-linked marker among moose populations in Poland. Our mtDNA study revealed that a variety of different factors—bottleneck, the presence of relict, autochthonous populations, translocations, limited female dispersal, and the colonization from the east and north—are responsible for the observed complex pattern of population genetic structure after demographic and spatial expansion of moose in Poland.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

58

Numer

4

Opis fizyczny

p.367-378,fig.,ref.

Twórcy

autor
  • Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
  • Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor
  • Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor
  • Kampinos National Park, Tetmajera 38, 05-080 Izabelin, Poland
  • Kampinos National Park, Tetmajera 38, 05-080 Izabelin, Poland
  • Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland

Bibliografia

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory, Akademiai Kiado, Budapest, pp 267–281
  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48
  • Barbosa MA, Carranza J (2010) Lack of geographic variation in Y-chromosomal introns of red deer (Cervus elaphus). J Neg Res Ecol Evol Biol 7:1–4
  • Bradley DG, MacHugh DE, Cunningham P, Loftus RT (1996) Mitochondrial diversity and the origins of African and European cattle. Proc Natl Acad Sci U S A 93:5131–5135
  • Brincken J (1826) Memoire descriptif sur la foret imperiale de Białowieża en Lithuanie. N. Glückserg, Warsaw (in French)
  • Calvignac S, Hughes S, Hänni C (2009) Genetic diversity of endangered brown bear (Ursus arctos) populations at the crossroads of Europe, Asia and Africa. Divers Distrib 15:742–750. doi:10.​1111/​j.​1472-4642.​2009.​00586.​x
  • Cederlund G, Sand H (1994) Home-range size in relation to age and sex in moose. J Mammal 75:1005–1012
  • Charlier J, Laikre L, Ryman N (2008) Genetic structure and evidence of a local bottleneck in moose in Sweden. J Wild Manag 72:411–415. doi:10.​2193/​2007-122
  • Chikuni K, Mori Y, Tabata T, Saito M, Monma M, Kosugiyama M (1995) Molecular phylogeny based on the kappa-casein and cytochrome b sequences in the mammalian suborder Ruminantia. J Mol Evol 41:859–866
  • Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679. doi:10.​1111/​j.​1365-294X.​2006.​02861.​x
  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. doi:10.​1093/​molbev/​mss075
  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581
  • Dzięciołowski R, Pielowski P (1993) Alces. Anton-5 Sp. z o.o., Warsaw, pp 1–208 (in Polish)
  • Excoffier L, Laval G, Schneider S (2006) ARLEQUIN ver 3.1: an integrated software package for population genetics date analysis. Genetics and Molecular Genetics Population Lab, Institute of Zoology, University of Geneva, Switzerland
  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351. doi:10.​1016/​j.​tree.​2008.​04.​004
  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501. doi:10.​1146/​annurev.​ecolsys.​39.​110707.​173414
  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491
  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925
  • Gaillard JM (2007) Are moose only a large deer? Some life history considerations. Alces 43:1–11
  • Gębczyńska Z, Raczyński J (2004) Moose in the Biebrza River valley. In: The situation of moose populations in Poland. Biebrza National Park Press, Osowiec, pp 5–19 (in Polish)
  • Haanes H, Røed KH, Mysterud A, Langvatn R, Rosef O (2010) Consequences for genetic diversity and population performance of introducing continental red deer into the northern distribution range. Conserv Genet 11:1653–1665. doi:10.​1007/​s10592-010-0048-1
  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98
  • Hallatschek O, Hersen P, Ramanathan S, Nelson DR (2007) Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci U S A 104:19926–19930. doi:10.​1073/​pnas.​0710150104
  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600
  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174
  • Hellborg L, Ellegren H (2003) Y chromosome conserved anchored tagged sequences (YCATS) for the analysis of mammalian male-specific DNA. Mol Ecol 12:283–291. doi:10.​1046/​j.​1365-294X.​2003.​01702.​x
  • Hellborg L, Ellegren H (2004) Low levels of nucleotide diversity in mammalian Y chromosomes. Mol Biol Evol 21(1):158–163. doi:10.​1093/​molbev/​msh008
  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276. doi:10.​1111/​j.​1095-8312.​1996.​tb01434.​x
  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi:10.​1038/​35016000
  • Hundertmark KJ, Bowyer RT (2004) Genetics, evolution, and phylogeography of moose. Alces 40:103–122
  • Hundertmark K, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv Genet 11:139–147. doi:10.​1007/​s10592-009-0013-z
  • Hundertmark KJ, Shields GF, Udina IG, Bowyer RT, Danilkin AA, Schwartz CC (2002) Mitochondrial phylogeography of moose (Alces alces): Late Pleistocene divergence and population expansion. Mol Phyl Evol 22:375–387. doi:10.​1006/​mpev.​2001.​1058
  • Kalendar R, Lee D, Schulman AH (2009) FastPCR software for PCR primer and probe design and repeat search. Gene Genomes Genom 3:1–14
  • Karpiński JJ (1951) Moose (Alces alces L.) in Bialowieza primeval forest. Chrońmy Przyr Ojcz 11–12:40–48 (in Polish)
  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
  • Lenkova A, Panfil J (1973) Moose, Alces alces on the Polish land. Studia Naturae Seria B, Warsaw
  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.​1093/​bioinformatics/​btp187
  • Nichols RA, Hewitt G (1994) The genetic consequences of long distance dispersal during colonization. Heredity 72:312–317. doi:10.​1038/​hdy.​1994.​41
  • Niedziałkowska M, Jędrzejewska B, Wójcik JM, Goodman SJ (2012) Genetic structure of red deer population in northeastern Poland in relation to the history of human interventions. J Wild Manag 76:1264–1276. doi:10.​1002/​jwmg.​367
  • Nussey DH, Pemberton J, Donald A, Kruuk LEB (2006) Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity 97:56–65. doi:10.​1038/​sj.​hdy.​6800838
  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.​1111/​j.​1471-8286.​2005.​01155.​x
  • Pilot M, Jędrzejewski W, Branicki W, Sidorovich VE, Jędrzejewska B, Stachura K, Funk SM (2006) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553. doi:10.​1111/​j.​1365-294X.​2006.​03110.​x
  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. doi:10.​1093/​molbev/​msn083
  • Raczyński J (2006) Moose in Poland—a current state and perspectives. In: Is there a place for moose? Uroczysko Supraśl, pp 24–38 (in Polish with English summary)
  • Randi E (2005) Management of wild ungulate populations in Italy: captive-breeding, hybridisation and genetic consequences of translocations. Vet Res Commun 29:71–75. doi:10.​1007/​s11259-005-0025-1
  • Randi E, Pierpaoli M, Danilkin A (1998) Mitochondrial DNA polymorphism in populations of Siberian and European roe deer (Capreolus pygargus and C. capreolus). Heredity 80:429–437. doi:10.​1046/​j.​1365-2540.​1998.​00318.​x
  • Rogers A (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615
  • Rowe KC, Heske EJ, Brown PW, Paige KN (2004) Surviving the ice: Northern refugia and postglacial colonization. PNAS 101:10355–10359. doi:10.​1073/​pnas.​0401338101
  • Schmölcke U, Zachos FE (2005) Holocene distribution and extinction of the moose (Alces alces, Cervidae) in Central Europe. Mamm Biol 70:329–344. doi:10.​1016/​j.​mambio.​2005.​08.​001
  • Schönfeld F (2009) Presence of moose (Alces alces) in Southeastern Germany. Eur J Wildl Res 55:449–453. doi:10.​1007/​s10344-009-0272-5
  • Skog A, Zachos FE, Rueness EK, Feulner PGD, Mysterud A, Langvatn R, Lorenzini R, Hmwe SS, Lehoczky I, Hartl GB, Stenseth NC, Jakobsen KS (2009) Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr 36:66–77. doi:10.​1111/​j.​1365-2699.​2008.​01986.​x
  • Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mammal Rev 36:251–265. doi:10.​1111/​j.​1365-2907.​2006.​00093.​x
  • Steinbach HJ (2009) Moose survived in East Pussia. Wild und Hund 17:17–21 (in German)
  • Świsłocka M, Ratkiewicz M, Borkowska A, Komenda E, Raczyński J (2008) Mitochondrial DNA diversity in moose, Alces alces from Northeastern Poland: evidence for admixture in bottlenecked relic population in the Biebrza valley. Ann Zool Fenn 45:360–365
  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464
  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.​1093/​molbev/​msr121
  • Tomek A (1977) The occurrence and some ecological parameters of the moose in Poland. Acta Theriol 22:485–508
  • Van Ballenberghe V (2006) Predator control, politics, and wildlife conservation in Alaska. Alces 42:1–11
  • Vernesi C, Pecchioli E, Caramelli D, Tiedemann R, Randi E, Bertorelle G (2002) The genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and Central Italy, with reference to the mitochondrial DNA phylogeography of Europe. Mol Ecol 11:1285–1297. doi:10.​1046/​j.​1365-294X.​2002.​01534.​x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-41019866-6dfb-4145-98f2-1117d7e3fd25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.