PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 59 | 2 |

Tytuł artykułu

Modeling temperature-dependent development and demography of Adalia decempunctata L.(Coleoptera: Coccinellidae) reared on Aphis gossypii (Glover) (Homoptera: Aphididae)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Development and demography of Adalia decempunctata L. were studied under laboratory conditions at seven constant temperatures (12, 16, 20, 24, 28, 32 and 36°C). First instar larvae failed to develop to second instar at 12°С and no development occurred at 36°C. The total developmental time varied from 47.92 days at 16°C to 15.94 days at 28°C and increased at 32°C. The lower temperature thresholds of 11.05 and 9.90°C, and thermal constants of 290.84 day-degree and 326.34 day-degree were estimated by traditional and Ikemoto- Takai linear models, respectively. The lower temperature threshold (Tmin) values estimated by Analytis, Briere-1, Briere-2 and Lactin-2 for total immature stages were 11.99, 12.24, 10.30 and 10.8°C, respectively. The estimated fastest developmental temperatures (Tfast) by the Analytis, Briere-1, Briere-2 and Lactin-2 for overall immature stages development of A. decempunctata were 31.5, 31.1, 30.7 and 31.7°C, respectively. Analytis, Briere-1, Briere-2 and Lactin-2 measured the upper temperature threshold (Tmax) at 33.14, 36.65, 32.75 and 32.61°C. The age-stage specific survival rate (sxj) curves clearly depicted the highest and lowest survival rates at 16 and 32°C for males and females. The age-specific fecundity (mx) curves revealed higher fecundity rate when fed A. gossypii at 24 and 28°C. The highest and lowest values of intrinsic rate of increase (r) were observed at 28 and 16°C (0.1945 d–1 and 0.0592 d–1, respectively). Also, the trend of changes in the finite rate of increase (λ) was analogous with intrinsic rate of increase. The longest and shortest mean generation time (T) was observed at 16 and 28°C, respectively and the highest net reproductive rates (R0) was estimated at 24 and 28°C. According to the results, the most suitable temperature seems to be 28°C due to the shortest developmental time, highest survival rate, and highest intrinsic rate of increase.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

59

Numer

2

Opis fizyczny

p.229-243,fig.,ref.

Twórcy

  • Department of Plant Protection, University Campus 2, University of Guilan, Rasht, Iran
  • Plant Protection Research Department, Guilan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
autor
  • Department of Plant Protection, University Campus 2, University of Guilan, Rasht, Iran
  • Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
autor
  • Department of Plant Protection, University Campus 2, University of Guilan, Rasht, Iran
  • Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
autor
  • Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
  • Department of Plant Protection, University Campus 2, University of Guilan, Rasht, Iran
  • Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Bibliografia

  • Agarwala B.K., Bardhanroy P., Yasuda H., Takizawa T. 2003. Effects of conspecific and heterospecific competitors on feeding and oviposition of a predatory ladybird: a laboratory study. Entomologia Experimentalis et Applicata 106 (3): 219–226. DOI: https://doi.org/10.1046/j.1570-7458.2003.00021
  • Aghdam H.R., Fathipour Y., Radjabi G., Rezapanah M. 2009. Temperature dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environmental Entomology 38 (3): 885–895. DOI: https://doi.org/10.1603/022.038.0343
  • Akaike H. 1974. A new look at the statiscal model identification. IEEE transactions on automatic control 19: 716–723.
  • Amarasekare P., Savage V. 2012. A framework for elucidating the temperature dependence of fitness. The American Naturalist 179: 178–191.
  • Analytis S. 1981. Relationship between temperature and development times in phytopathogenic fungus and in plant pests: a mathematical model. Agricultural Research (Athens) 5: 133–159.
  • Atlihan R., Chi H. 2008. Temperature dependent development and demography of Scymnus subvillosus (Coleoptera: Coccinellidae) reared on Hyalopterus pruni (Homoptera: Aphididae). Journal of Economic Entomology 101: 325–333. DOI: https://doi.org/10.1093/jee/101.2.325
  • Briere J.F., Pracros P., Roux A.Y., Pierre S. 1999. A novel rate model of temperature dependent development for arthropods. Environmental Entomology 28 (1): 22–29. DOI: https://doi.org/10.1093/ee/28.1.22
  • Campbell A., Frazer B.D., Gilbert N., Gutierrez A.P., Mackauer M. 1974. Temperature requirements of some aphids and their parasites. Journal Applied Ecology 11 (2): 431–438.
  • Chi H. 1988. Life table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17 (1): 26–34. DOI: https://doi.org/10.1093/ee/17.1.26
  • Chi H. 2018. TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. Available on: http://140.120.197.173/Ecology
  • Chi H., Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica 24 (2): 225–240.
  • Chi H., Su H.Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology 35 (1): 10–21. DOI: https://doi.org/10.1603/0046-225X-35.1.10
  • Eliopoulos P.A., Kontodimas D.C., Stathas G.J. 2010. Temperature-Dependent Development of Chilocorus bipustulatus (Coleoptera: Coccinellidae). Environmental Entomology 39 (4): 1352–1358. DOI: 10.1603/EN09364
  • Force D.C., Messenger P.S. 1968. The use of laboratory studies of three hymenopterous parasites to evaluate their field potential. Journal of Economic Entomology 61 (5): 1374–1378. DOI: https://doi.org/10.1093/jee/61.5.1374
  • Guncan A., Yoldas Z. 2010. Studies on the aphids (Hemiptera: Aphididae) and their natural enemies on peach orchards in Izmir. Turkish Journal of Entomology 34 (3): 399–408.
  • Haghani M., Fathipour Y., Talebi A.A., Baniameri V. 2007. Thermal requirement and development of Liriomyza sativae (Diptera: Agromyzidae) on cucumber. Journal Economic Entomology 100 (2): 350–356. DOI: https://doi.org/10.1603/0022-0493
  • Hodek I. 1973. Biology of Coccinellidae. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, Czech, 260 pp.
  • Honek A. 1985. Habitat preferences of aphidophagous Coccinellids (Coleoptera). Entomophaga 30 (3): 253–264.
  • Honek A., Martinkova Z., Dixon A.G., Roy H., Pekar S. 2016. Long-term changes in communities of native coccinellids: population fluctuations and the effect of competition from an invasive non-native species. Insect Conservation and Diversity 9: 202–209. DOI: https://doi.org/10.1111/icad.12158
  • Huey R.B., Berrigan D. 2001. Temperature, demography, and ectotherm fitness. The American Naturalist 158 (2): 204–210.
  • Huffaker C.H., Gutierrez A.P. 1999. Ecological Entomology. 2nd ed. John Wiley and Sons, New York, 776 pp.
  • Ikemoto T., Takai K. 2000. A new linearized formula for the law of total effective temperature and the evaluation of line ftting methods with both variables subject to error. Environmental Entomology 29 (4): 671–682. DOI: https://doi.org/10.1603/0046-225X-29.4.671
  • Jalali M.A., Tirry L., Arbab A., De Clercq P. 2010. Temperaturedependent development of the two spotted ladybeetle, Adalia bipunctata, on the green peach aphid, Myzus persicae, and a factitious food under constant temperatures. Journal of Insect Science 10 (1): 1–14. DOI: https://doi.org/10.1673/031.010.12401
  • Jalali M.A., Tirry L., De Clercq P. 2009. Effects of food and temperature on development, fecundity and life table parameters of Adalia bipunctata (Coleoptera: Coccinellidae). Journal of Applied Entomology 133 (8): 615–625. DOI: https://doi.org/10.1111/j.1439-0418.2009.01408
  • Jarosik V., Honek A., Dixon A.F.G. 2002. Developmental rate isomorphy in insects and mites. The American Naturalist 160: 497–510.
  • Kambhampati S., Mackauer M. 1989. Multivariate assessment of inter and intraspecific variation in performance criteria of several pea aphid parasites (Hymenoptera: Aphidiidae). Annals of the Entomological Society of America 82 (3): 314–324. DOI: https://doi.org/10.1093/aesa/82.3.314
  • Karimi-Malati A., Fathipour Y., Talebi A. 2014. Development response of Spodoptera exigua to eight constant. temperatures: Linear and nonlinear modeling. Journal of Asia-Pacific Entomology 17 (3): 349–354. DOI: https://doi.org/10.1016/j.aspen.2014.03.002
  • Katsarou I., Margaritopoulos J.T., Tsitsipis J.A., Perdikis D.C., Zarpas K. 2005. Effect of temperature on development, growth and feeding of Coccinella septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. BioControl 50 (4): 565–588. DOI: 10.1007/s10526-004-2838-1
  • Komazaki S. 1994. Ecology of citrus aphids and their importance ti virus transmission. Japan Agricultural Reasearch Quarterly 28 (3): 177–184.
  • Kontodimas D., Eliopoulos P.A., Stathas G.L., Economus L.P. 2004. Comparative temperature dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): Evaluation of a linear and various nonlinear models using specific criteria. Environmental Entomology 33 (1): 11–21. DOI: https://doi.org/10.1603/0046-225X-33.1.1
  • Lactin D.J., Holliday N.J., Johnson D.L., Craigen R. 1995. Improved rate of temperature dependent development by arthropods. Environmental Entomology 24 (1): 68–75. DOI: https://doi.org/10.1093/ee/24.1.68
  • Lamana M.L., Miller J.C. 1998. Temperature-dependent development in an oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environmental Entomology 27 (4): 1001–1005. DOI: https://doi.org/10.1093/ee/27.4.1001
  • Lamb R.J. 1992. Development rate of Acyrthosiphon pisum (Hom: Aphididae) at low temperature: Implications for estimating rate parameters for insects. Environmental Entomology 21 (1): 10–19. DOI: https://doi.org/10.1093/ee/21.1.10
  • Lee K.P., Roh C. 2010. Temperature by nutrient interactions affecting growth rate in an insect ectotherm. Entomologia Experimentalis et Applicata 136 (2): 151–163. DOI: https://doi.org/10.1111/j.1570-7458.2010.01018
  • Magro A., Araujo J., Hemptinne J.L. 1999. Coccinellids (Coleoptera: Coccinellidae) in citrus groves in Portugal: listing and analysis of geographical distribution. Plant Health Bulletin. Pests (Boletín de sanidad vegetal. Plagas – in Spanish) 25: 335–345.
  • Messenger P.S. 1970. Bioclimatic inputs to biological control and pest management programs. p. 84–102. In: “Concepts of Pest Management” (R.L. Rabb, F.E. Guthrie, eds.). North Carolina State University Press, Raleigh, 242 pp.
  • Miller J.C. 1992. Temperature dependent development of the convergent lady beetle (Coleoptera: Coccinellidae). Environmental Entomology 21: 197–201. DOI: https://doi.org/10.1093/ee/21.1.197
  • Miller J.C., LaMana M.L. 1996. Assessment of temperature dependent development in the general population and among isofemale lines of Coccinella trifaciata. Entomophaga 40 (2): 183–192.
  • Mojib-Haghghadam Z., Jalali Sendi J., Zibaee A., Mohaghegh J. 2018. Suitability of Aphis gossypii Glover, Aphis fabae Scop. and Ephestia kuehniella Zeller eggs for the biology and lifetable parameters of Adalia decempunctata (L.) (Coleoptera: Coccinellidae). Archives of Biological Sciences 70 (4): 737–747. DOI: https:// doi.org/10.2298/ABS180620038
  • Nikitsky N.B., Ukrainsky A.S. 2016. The ladybird beetles (Coleoptera, Coccinellidae) of Moscow Province. Entomological Review 96 (6): 710–735.
  • Obrycki J.J., Kring T.J. 1998. Predaceous Coccinellidae in biological control. Annual Review of Entomology 43: 295–321.
  • Obrycki J.J., Tauber M.J. 1978. Thermal requirements for development of Coleomegilla maculata (Coleoptera: Coccinellidae) and its parasite Perilitus coccinellae (Hymenoptera: Braconidae). Canadian Entomologist 110 (4): 407–412. DOI: https://doi.org/10.4039/Ent110407-4
  • Obrycki J.J., Tauber M.J. 1982. Thermal requirements for development of Hippodamia convergens (Coleoptera: Coccinellidae). Annals of the Entomological Society of America 75 (6): 678–683. DOI: https://doi.org/10.1093/aesa/75.6.678
  • Papanikolaou N.E., Milonas P.G., Kontodimas D.C., Demiris N., Matsinos Y.G. 2013. Temperature-dependent development, survival, longevity, and fecundity of Propylea quatuordecimpunctata (Coleoptera:Coccinellidae). Arthropod Biology 106 (2): 228–234. DOI: https://doi.org/10.1603/AN12104
  • Polat Akköprü E., Atlıhan R., Okut H., Chi H. 2015. Demographic assessment of plant cultivar resistance to insect pests: a case study of the dusky veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. Journal of Economic Entomology 108 (2): 378–387. DOI: https://doi.org/10.1093/jee/tov011
  • Ramzani I., Samih M.A. 2016. Effect of temperature on development rate of Hippodamia variegata by feeding on pomegranate green aphid Aphis punicae. Bio Contorol in Plant Protection 3 (2): 16–34.
  • Rebolledol R., Sheriff J., Parra L., Aguilera A. 2009. Life, seasonal cycles, and population fluctuation of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), in the centralplain of La Araucanía Region Chile. Chillian Journal Agricultural Research 6 (2): 292–298. DOI: http: dx. Doi.org/10.4067/S0718-58392009000200020
  • Rodriguez-Saona C., Miller J.C. 1999. Temperature dependent effects on development, mortality, and growth of Hippodamia convergens (Coleoptera: Coccinellidae). Environmental Entomology 28 (3): 518–522. DOI: https://doi.org/10.1093/ee/28.3.518
  • Rosen D., Huffaker D.R. 1983. An overview of desired attributes of effective biological control agents, with particular emphasis on mites. p. 2–11. In: “Biological Control of Pests by Mites” (M.A. Hoy, G.L. Cunningham, L. Knutson, eds.). University of California, Berkeley, 185 pp.
  • Roy M., Brodeur J., Cloutier C. 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environmental Entomology 31 (1): 177–187. DOI: https://doi.org/10.1603/0046-225X31.1.177
  • Santos A.P., Raimundo A., Bento A., Pereira J.A. 2012. Species abundance patterns of coccinellid communities associated with olive, chestnut and almond crops in north eastern Portugal. Agricultural and Forest Entomology 14 (4): 376–382. DOI: https://doi.org/10.1111/j.1461-9563.2012.00578
  • Satar G., Uygun N. 2012. The effects of various temperatures on development and fecundity of Scymnus subvillosus (Goeze) (Coleoptera: Coccinellidae) feeding on Aphis gossypii Glover (Hemiptera: Aphididae). Turkish Journal of Biological Control 3 (2): 169–182.
  • Schanderl H., Ferran A., Larroque M.M. 1985. The trophic and thermal requirements of larvae of the ladybeetle Harmonia axyridis Pallas. Agronomie. EDP Sciences 5: 417–421.
  • Schoolfield R.M., Sharpe P.J.H., Magnuson C.E. 1981. Nonlinear regression of biological temperature dependent rate models based on absolute reaction rate theory. Journal of Theoretical Biology 88 (4): 719–731. DOI: https://doi.org/10.1016/0022-5193(81)90246-0
  • Shi P., Sandhu H.S., Ge F. 2013. Could the intrinsic rate of increase represent the fitness in terrestrial ectotherms? Journal of Thermal Biology 38 (3): 148–151. DOI: https://doi.org/10.1016/j.jtherbio.2013.01.002
  • Skouras P.J., Stathas G.J. 2015. Development growth and body weight of Hippodamia variegata fed aphis fabae in the laboratory. Bulletin of Insectology 68 (2): 193–198.
  • Southwood T.R.E., Henderson P.A. 2009. Ecological Methods. 3th ed. John Wiley & Sons, Oxford, UK, 592 pp.
  • Stathas G.J., Kontodimas D.C., Karamaouna F., Kampouris S. 2011. Thermal requirements and effect of temperature and prey on the development of the predator Harmonia axyridis. Environmental Entomology 40 (6): 1541–1545. DOI: http://dx.doi.org/10.1603/EN10240
  • Vucetich J.A., Peterson R.O., Schaefer C.L. 2002. The effect of prey and predator densities on wolf predation. Ecology 83 (11): 3003–3013. DOI: https://doi.org/10.1890/0012-9658
  • Wagner T.L., Wu P.J., Sharp H., Schoolfield R.M., Coulson R.N. 1984. Modeling insect development rates: A literature review and application of a biophysical model. Annals of the Entomological Society of America 77 (2): 208–220. DOI: https://doi.org/10.1093/aesa/77.2.208
  • Zahiri B., Fathipour Y., Khanjani M., Moharramipour S., Zaluki M. 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environmental Entomology 39 (1): 177–189. DOI: https://doi.org/10.1603/EN08239

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-408d1e33-6943-4cbb-9b04-665d83496fe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.