PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 58 | 1 |

Tytuł artykułu

Mucosal vaccination - an old but still vital strategy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The basic premise of vaccinology is to achieve strong protective immunity against defined infectious agents by a vaccine mimicking the effects of natural primary exposure to a pathogen. Because an exposure of humans and animals to microbes occurs mostly through mucosal surfaces, targeting the mucosa seems a rational and efficient vaccination strategy. Many experimental and clinical data confirmed that mucosal immunization offers many advantages over widely used in human and veterinary medicine subcutaneous or intramuscular immunization. In the present article selected aspects regarding mucosal vaccination are discussed. The structure and function of mucosaassociated lymphoid tissue (MALT), comprised of four main mucosal compartments forming a structural and functional unity as well as pivotal cellular MALT components (dendritic and M cells) were briefly characterized. Particular attention was focused on the mode of simple but efficacious delivery of vaccine antigens to mucosal surfaces. A few trials to generate potential mucosal vaccines against toxoplasmosis introduced by nasal or oral routes to experimental animals are also presented.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.1-8,fig.,ref.

Twórcy

autor
  • Chair of Immunology and Infectious Biology, Department of Immunoparasitology, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland

Bibliografia

  • [1] Cesta M.F. 2006. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicologic Pathology 34: 599-608.
  • [2] Mestecky J., Moldoveanu Z., Russell M.W. 2005. Immunologic uniqueness of the genital tract: challenge for vaccine development. American Journal of Reproductive Immunology 53: 205-214.
  • [3] Kracke A., Hiller A.S., Tschernig T., Kasper M., Kleemann W.J., Tröger H.D., Pabst R. 1997. Larynxassociated lymphoid tissue (LALT) in young children. The Anatomical Record 248: 413-420.
  • [4] Knop E., Knop N. 2007. Anatomy and immunology of the ocular surface. Chemical Immunology and Allergy 92: 36-49.
  • [5] MacDonald T.T. 2003. The mucosal immune system. Parasite Immunology 25: 235-246.
  • [6] Brandtzaeg P., Kiyono H., Pabst R., Russell M.W. 2008. Terminology: nomenclature of mucosaassociated lymphoid tissue. Mucosal Immunology 1: 31-37.
  • [7] Neutra M.R., Kozlowski P.A. 2006. Mucosal vaccines: the promise and the challenge. Nature Reviews. Immunology 6: 148-158.
  • [8] Asano M., Komiyama K. 2011. Polymeric immunoglobulin receptor. Journal of Oral Science 53: 147-156.
  • [9] Mestecky J., Russell M.W., Elson C.O. 1999. Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 44: 2-5.
  • [10] Saltzman W.M., Radomsky M.L., Whaley K.J., Cone R.A. 1994. Antibody diffusion in human cervical mucus. Biophysical Journal 66: 508-515.
  • [11] Vojdani A., O’Bryan T., Kellermann G.H. 2008. The immunology of immediate and delayed hypersensivity reaction to gluten. European Journal of Inflammation 6: 1721-1727.
  • [12] Neutra M.R. 1998. Current concepts in mucosal immunity. V. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. American Journal of Physiology 274: G785-G791.
  • [13] Nicoletti C. 2000. Unsolved mysteries of intestinal M cells. Gut 47: 735-739.
  • [14] Jang M.H., Kweon M.N., Iwatani K., Yamamoto M., Terahara K., Sasakawa C., Suzuki T., Nochi T., Yokota Y., Rennert P.D., Hiroi T., Tamagawa H., Iijima H., Kunisawa J., Yuki Y., Kiyono H. 2004. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proceedings of the National Academy of Sciences of the United States of America 101: 6110-6115.
  • [15] http://www.nobelprize.org/nobel_prizes/medicine/laureates/2011/press.html
  • [16] Lipscomb M.F., Masten B.J. 2002. Dendritic cells: immune regulators in health and disease. Physiological Reviews 82: 97-130.
  • [17] Soloff A.C., Barratt-Boyes S.M. 2010. Enemy at the gates: dendritic cells and immunity to mucosal pathogens. Cell Research 20: 872-885.
  • [18] Fenner F., Henderson D.A., Arita I., Ježek Z., Ladnyi I.D. 1988. Smallpox and its eradication. In: History of International Public Health, WHO Geneva, chapter 6: 245-276.
  • [19] World Health Organization. 2010. Polio vaccines and polio immunization in the pre-eradication era: WHO position paper. Weekly Epidemiological Record 85: 213-228.
  • [20] Levine M.M., Campbell J.D., Kotloff K.L. 2002. Overview of vaccines and immunisation. British Medical Journal 62: 1-13.
  • [21] Tyrer P., Foxwell A.R., Cripps A.W., Apicella M.A., Kyd J.M. 2006. Microbial pattern recognition receptors mediate M-cell uptake of gram-negative bacterium. Infection and Immunity 74: 625-631.
  • [22] Hase K., Kawano K. Nochi T., Pontes G.S., Fukuda S., Ebisawa M., Kadokura K., Tobe T., Fujimura Y., Kawano S., Yabashi A., Waguri S., Nakato G., Kimura S., Murakami T., Iimura M., Hamura K., Fukuoka S., Lowe A.W., Itoh K., Kiyono H., Ohno H. 2009. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462: 226-230.
  • [23] Kim S.H., Jung D.I., Yang I.Y., Kim J., Lee K.Y., Nochi T., Kiyono H., Jang Y.S. 2011. M cells expressing the complement C5a receptor are efficient target for mucosal vaccine delivery. European Journal of Immunology 41: 1-11.
  • [24] Gupta P.N., Vyas S.P. 2011. Investigation of lectinized liposomes as M-cell targeted carrieradjuvant for mucosal immunization. Colloids and Surfaces B: Biointerfaces 82: 118-125.
  • [25] Stano A., van der Vlies A.J., Martino M.M., Swartz M.A., Hubbell J.A., Simeoni E. 2001. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine 17: 804-812.
  • [26] Fievez V., Plapied L., Plaideau C., Legendre D., des Rieux A., Pourcelle V., Freichels H., Jérôme C., Marchand J., Préat V., Schneider Y.J. 2010. In vitro identification of targeting ligands of human M cells by phage display. International Journal of Pharmacology 394: 35-42.
  • [27] Kim S.H., Seo K.W., Kim J., Lee K.Y., Jang Y.S. 2010. The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. The Journal of Immunology 185: 5787-5795.
  • [28] Malik B., Goyal A.K., Zakir F., Vyas S.P. 2011. Surface engineered nanoparticles for oral immunization. Journal of Biomedical Nanotechnology 7: 132-134.
  • [29] Soudi S., Hosseini A.Z., Hashemi S.M. 2011. Coadministration of rectal BCG and autoclaved Leishmania major induce protection in susceptible BALB/c mice. Parasite Immunology 33: 561-571.
  • [30] Boisgérault F., Morón G., Leclerc C. 2002. Viruslike particles: a new family of delivery systems. Expert Review of Vaccines 1: 101-109.
  • [31] Graham B.S., Kines R.C., Corbett K.S., Nicewonger J., Johnson T.R., Chen M., LaVigne D., Roberts J.N., Cuburu N., Schiller J.T., Buck C.B. 2010. Mucosal delivery of human papillomavirus pseudovirusencapsidated plasmids improves the potency of DNA vaccination. Mucosal Immunology 3: 475-486.
  • [32] Chionh Y.T., Sutton P. 2010. Targeting of whole killed bacteria to gastrointestinal M-cells induces humoral immunity in the female reproductive tract. Gut Microbes 1: 42-44.
  • [33] Zhu Q., Thomson C.W., Rosenthal K.L., McDermott M.R., Collins S.M., Gauldie J. 2008. Immunization with adenovirus at the large intestinal mucosa as an effective vaccination strategy against sexually transmitted viral infection. Mucosal Immunology 1: 78-88.
  • [34] Kutteh W., Kantele A., Moldoveanu Z., Crowley-Nowick P. A., Mestecky J. 2001. Induction of specific immune responses in the genital tract of women after oral or rectal immunization and rectal boosting with Salmonella typhi Ty 21a vaccine. Journal of Reproductive Immunology 52: 61-75.
  • [35] Montoya J.G., Liesenfeld O. 2004. Toxoplasmosis. Lancet 12: 1965-1976.
  • [36] Kur J., Holec-Gąsior L., Hiszczyńska-Sawicka E. 2009. Current status of toxoplasmosis vaccine development. Expert Review of Vaccines 8: 791-808.
  • [37] Velge-Roussel F., Marcelo P., Lepage A.C., Buzoni-Gatel D., Bout D.T. 2000. Intranasal immunization with Toxoplasma gondii SAG1 induces protective cells into both NALT and GALT compartments. Infection and Immunity 68: 969-972.
  • [38] Igarashi M., Kano F. Tamekuni K., Machado R.Z., Navarro I.T., Vidotto O., Vidotto M.C., Garcia J.L. 2008. Toxoplasma gondii: Evaluation of an intranasal vaccine using recombinant proteins against brain cyst formation in BALB/c mice. Experimental Parasitology 118: 386-392.
  • [39] Cong H., Gu Q.M., Jiang Y., He S.Y., Zhou H.Y., Yang T.T., Li Y., Zhao Q.L. 2005. Oral immunization with a live recombinant attenuated Salmonella typhimurium protects against Toxoplasma gondii. Parasite Immunology 27: 29-35.
  • [40] Qu D., Wang S., Cai W., Du A. 2008. Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 26: 4541-4548.
  • [41] Dimier-Poisson I., Aline F., Bout D., Mévélec M.N. 2006. Induction of protective immunity against toxoplasmosis in mice by immunization with Toxoplasma gondii RNA. Vaccine 24: 1705-1709.
  • [42] Hedhli D., Dimier-Poisson I., Judge J.W., Rosenberg B., Mévélec M.N. 2009. Protective immunity against Toxoplasma challenge in mice by coadministration of T. gondii antigens and Eimeria profilin-like protein as an adjuvant. Vaccine 27: 2274-2281.
  • [43] Stanley A.C., Buxton D., Innes E.A., Huntley J.F. 2004. Intranasal immunisation with Toxoplasma gondii tachyzoite antigen encapsulated into PLG microspheres induces humoral and cell-mediated immunity in sheep. Vaccine 22: 3929-3941.
  • [44] Azizi A., Kumar A., Diaz-Mitoma F., Mestecky J. 2010. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathogens 6: e1001147.
  • [45] Faria A.M., Weiner H.L. 2005. Oral tolerance. Immunological Reviews 206: 232-259.
  • [46] Długońska H., Grzybowski M. 2011. Personalized vaccination. II. The role of natural microbiota in a vaccine-induced immunity. Wiadomości Parazytologiczne 57: 71-76.
  • [47] Pabst R., Tschernig T. 2010. Bronchus-associated lymphoid tissue. An entry site for antigens for successful mucosal vaccinations? American Journal of Respiratory Cell and Molecular Biology 43: 137-141.
  • [48] Wang L., Coppel R.L. 2008. Oral vaccine delivery: can it protect against non-mucosal pathogens? Expert Review of Vaccines 7: 729-738.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-402d9569-a0be-4915-a638-01337382a422
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.