PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 58 | 3 |

Tytuł artykułu

An enigmatic, possibly chemosymbiotic, hexactinellid sponge from the early Cambrian of South China

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Six specimens of a strongly curved, cylindrical hexactinellid sponge have been recovered from the Tommotian– Atdabanian Hetang Biota of South China, and are described as Decumbispongia yuani gen. et sp. nov. The robust, thick−walled sponge shows no evidence of an osculum or basal structures, and the body form is inconsistent with an upright, filter−feeding life position. Interpretations as a detritivore feeding by amoeboid extensions, or as a facultative chemosynthetic symbiosis of sponge and bacteria are considered. The latter interpretation is preferred due to the highly constrained body shape, and the body form is interpreted from this perspective. The species indicates that Cambrian sponges occupied at least some autecological niches that appear to have been vacant since that time.

Wydawca

-

Rocznik

Tom

58

Numer

3

Opis fizyczny

p.641-649,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
autor
  • State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
autor
  • State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
autor
  • State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China

Bibliografia

  • Barthel, D. and Gutt, J. 1992. Sponge associations in the eastern Weddell Sea. Antarctic Science 4: 137–150.
  • Bavestrello, G., Benatti, U., Calcinai, B., Cattaneo−Vietti, R., Cerrano, C., Favre, A., Giovine, M., Lanza, S., Pronzato, R., and Sara, M. 1998. Body polarity and mineral selectivity in the demosponge Chondrosia reniformis. Biological Bulletin 195: 120–125.
  • Bidder, G.P. 1933. Sponges without collared cells. Nature 132: 441–442.
  • Beecher, C.E. 1889. Brachiospongiidae. A memoir on a group of Silurian sponges. Peabody Museum Yale University Memoirs 2: 1–28.
  • Bond, C. and Harris, A.K. 1988. Locomotion of sponges and its physical mechanism. Journal of Experimental Zoology 246: 271–284.
  • Botting, J.P. 2003. Growth patterns of Lower Palaeozoic sponges. Lethaia 36: 41–52.
  • Bowden, K.F. 1978. Physical problems of the benthic boundary layer. Geophysical Surveys 3: 225–296.
  • Carey, D.A. 1983. Particle resuspension in the benthic boundary layer induced by flow around polychaete tubes. Canadian Journal of Fisheries and Aquatic Sciences 40 (S1): s301–s308.
  • Carrera, M.G. 2007. The oldest hindiid demosponge from the Darriwilian (Middle Ordovician) of the Argentine Precordillera: evolutionary implications for the triclanocladines. Journal of Paleontology 81: 754–759.
  • Carrera, M.G. and Ortega, G. 2009. The hexactinellid sponge Cyathophycus from the Upper Ordovician of the Argentine Precordillera. Ameghiniana 46: 449–459.
  • Carrera, M.G. and Rigby, J. K. 2004. Sponges. In: B.D. Webby, M.L. Droser, F. Paris, and I.G. Percival (eds.), The Great Ordovician Biodiversification Event, 102–111. Columbia University Press, New York.
  • Cristobo, F.J., Urgorri, V., and Ríos, P. 2005. Three new species of carnivorous deep−sea sponges from the DIVA−1 expedition in the Angola Basin (South Atlantic). Organisms, Diversity and Evolution 5: 203–213.
  • Erpenbeck, D., Breeuwer, J.A.J., van der Velde, H.C., and van Soest, R.M.W. 2002. Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker. Marine Biology 141: 377–386.
  • Finks, R.M. 1971. A new Permian Eutaxicladine demosponge, mosaic evolution, and the origin of the Dicranocladina. Journal of Paleontology 45: 977–997.
  • Finks, R.M. and Rigby, J.K. 2004. Palaeozoic hexactinellid sponges. In: R.M. Finks, R.E.H. Reid, and J.K. Rigby (eds.), Treatise on Invertebrate Paleontology, Part E (revised). Volume 3, 320–448. Geological Society of America and the University of Kansas Press, Lawrence.
  • Ghiold, J., Rountree, G.A., and Smith, S.H. 1994. Common sponges of the Cayman Islands. In: M.A. Brunt and J.E. Davies (eds.), The Cayman Islands: Natural History and Biogeography, 131–138. Kluwer, Netherlands.
  • Gray, J.E. 1868. Note on Hyalonema Schultzei, Semper. Annals and Magazine of Natural History (Series 4) 2: 373–377.
  • Hoffmann, F. 2003. Microbial sulfate reduction in the tissue of the cold−water sponge Geodia barretti (Tetractinellida, Demospongiae). 48 pp. Unpublished Ph.D. thesis, Georg−August Universität zu Göttingen, Göttingen.
  • Jacobs, D.K., Nakanishi, N., Yuan, D., Camara, A., Nichols, S.A., and Hartenstein, V. 2007. Evolution of sensory structures in basal Metazoa. Integrative and Comparative Biology 47: 712–723.
  • Klitgaard, A.B. and Tendal, O.S. 2004. Distribution and species composition of mass occurrences of large−sized sponges in the northeastern Atlantic. Progress in Oceanography 61: 57–98.
  • Koopmans, M. and Wijffels, R.H. 2008. Seasonal growth rate of the sponge Haliclona oculata (Demospongiaea: Haplosclerida). Marine Biotechnology 10: 502–510.
  • Kübler, B. and Barthel, D. 1999. A carnivorous sponge, Chondrocladia gigantea (Porifera: Demospongiaea: Cladorhizidae), the giant deep−sea club sponge from the Norwegian trench. Memoirs of the Queensland Museum 44: 289–298.
  • Leys, S. 2003. The significance of syncytial tissues for the position of the Hexactinellida in the Metazoa. Integrative and Comparative Biology 43: 19–27.
  • Leys, S. and Eerkes−Medrano, D.I. 2006. Feeding in a calcareous sponge: particle uptake by pseudopodia. Biological Bulletin 211: 151–171.
  • Nickel, M. 2006. Like a “rolling stone”: quantitative analysis of the body movement and skeletal dynamics of the sponge Tethya wilhelma. The Journal of Experimental Biology 209: 2839–2846.
  • Nowell, A.R.M. and Jumars, P.A. 1984. Flow environments of aquatic benthos. Annual Review of Ecology and Systematics 15: 303–328.
  • Reiswig, H.M. 1971. Particle feeding in natural populations of the three marine demosponges. Biological Bulletin 141: 568–591.
  • Reiswig, H.M. 1975. The aquiferous system of three marine Demospongiae. Journal of Morphology 145: 493–502.
  • Reiswig, H.M. 1981. Partial carbon and energy budgets of the bacteriosponge Verongia fistularis(Porifera: Demospongiae) in Barbados. Marine Ecology 2: 273–293.
  • Rigby, J.K. 1970. Two new Upper Devonian hexactinellid sponges from Alberta. Journal of Palaeontology 44: 7–16.
  • Riisgård, H.U. and Larsen, P.S. 2000. Comparative ecophysiology of active zoobenthis filter feeding, essence of current knowledge. Journal of Deep Sea Research 44: 169–193.
  • Schmidt, O. 1870. Grundzüge einer Spongienfauna des Atlantischen Gebietes. 88 pp. Leipzig, Germany.
  • Sperling, E.A. and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution and Devlopment 12: 201–209.
  • Sperling, E.A., Peterson, K.J., and Laflamme, M. 2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9: 24–33.
  • Steger, D., Ettinger−Epstein, P., Whalan, S., Hentschel, U., de Nys, R., Wagner, M., and Taylor, M.W. 2008. Diversity and mode of transmission of ammonia−oxidizing archaea in marine sponges. Environmental Microbiology 10: 1087–1094.
  • Vacelet, J. 2007. Diversity and evolution of deep−sea carnivorous sponges. In: M.R. Custódio, G. Lôbo−Hajdu, E. Hajdu, and G. Muricy (eds.), Porifera Research: Biodiversity, Innovation and Sustainability. Museu Nacional, Rio de Janeiro, Série Livros 28: 107–115.
  • Vacelet, J. and Boury−Esnault, N. 1995. Carnivorous sponges. Nature 377: 333–335.
  • Vacelet, J., Fialamedioni, A., Fischer, C.R., and Boury−Esnault, N. 1995. A methanotrophic carnivorous sponge. Nature 377: 296.
  • Vacelet, J., Boury−Esnault, N., Fialamedioni, A., and Fischer, C.R. 1996. Symbiosis between methane−oxidising bacteria and a deep−sea carnivorous cladorhizid sponge. Marine Ecology Progress Series 145: 77–85.
  • Vosmaer, G.C.J. 1882. Report on the sponges dredged up in the Arctic Sea by the “Willem Barents” in the years 1878 and 1879. Niederländisches Archiv für Zoologie Supplement 1 (3): 1–56.
  • Webster, N.S. and Blackall, L.L. 2009. What do we really know about sponge−microbial symbioses? The ISME Journal 3: 1–3.
  • Webster, N.S., Wilson, K.J., Blackall, L.L., and Hill, R.T. 2001. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied and Environmental Microbiology 67: 434–444.
  • Xiao, S., Hu, J., Yuan, X., Parsley, R.L., and Cao, R., 2005. Articulated sponges from the Early Cambrian Hetang Formation in southern Anhui, South China: their age and implications for early evolution of sponges. Palaeogeography Palaeoclimatology Palaeoecology 220: 89–117.
  • Yahel, G., Sharp, J.H., Marie, D., Hase, C., and Genin, A. 2003. In situ feeding and element removal in the symbiont−bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnology and Oceanography 48: 141–149.
  • Yuan, X., Xiao, S., Parsley, R.L., Zhou, C., Chen, Z., and Hu, J. 2002. Towering sponges in an Early Cambrian Lagerstätte: disparity between non−bilaterian and bilaterian epifaunal tiers during the Neoproterozoic-Cambrian transition. Geology 30: 363–366.
  • Zhou, C. and Jiang, S.−Y. 2009. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: evidence from pyrite framboids, redox sensitive trace elements and sponge biota occurrence. Palaeogeography Palaeoclimatology Palaeoecology 271: 279–286.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3ff9ab63-dbda-4d27-82e3-2f793d412612
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.