PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 69 | 3 |

Tytuł artykułu

Hypomethylation of the c-myc promoter region induced by phenobarbital in rat liver

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. The changes in DNA methylation are considered as one of the early events in hepatocarcinogenesis. Objective. We evaluated the ability of phenobarbital (PB) – the most widely used anticonvulsant worldwide and classical rodent liver carcinogen – to cause the promoter region of the c-myc protooncogene hypomethylation as well as changes of mRNA level of this gene. Moreover, the expression of Dnmt1 protein in rat treated with this compound was analyzed. Material and Methods. Male Wistar rats received PB in daily oral doses of 92.8 mg kg-1 b.w. day-1 (at 24-h intervals; for one, three and fourteen days). Methylation of the c-myc promoter region was measured by PCR-based methylationsensitive restriction enzyme analysis (MSRA). Levels of mRNA for c-myc and protein Dnmt1 were assayed using Real- Time PCR and Western Blot, respectively. Results. The study showed that phenobarbital stimulated persistent changes in DNA methylation, i.e. loss of methylation in the promoter region of the c-myc gene and up-regulated its mRNA level. In addition, a significant increase in protein level of Dnmt1 in the c-myc over-expressing liver cells was observed. Conclusion. The oppose relationship between Dnmt1 activity and methylation status of c-myc gene was demonstrated. The c-myc over-expression by demethylation might represent an important, early events in the mechanism of action (MOA) of phenobarbital.
PL
Wprowadzenie. Zmiany metylacji DNA są rozważane jako jeden z wczesnych mechanizmów hepatokancerogenezy. Cel pracy. Celem badań była ocena wpływu fenobarbiatlu (PB) - leku przeciwpadaczkowego, modelowego promotora raka wątroby - na poziom metylacji regionu promotorowego i ekspresji na poziomie mRNA protoonkogenu c-myc. Ponadto dokonano analizy poziomu ekspresji białka Dnmt1. Materiał i metody. Samce szczurów szczepu Wistar otrzymywały PB w dawce 92,8 mg/kg m.c. x dzień-1 jednorazowo, 3-krotnie i 14-krotnie. Ocenę poziomu zmian metylacji genu c-myc dokonano metodą MSRA (ang. Methylation-Sensitive Restriction Enzyme Analysis). Analizę względnego poziomu transkryptów genu c-myc i białka Dnmt1 przeprowadzano odpowiednio metodą PCR w czasie rzeczywistymi i techniką Western Blot. Wyniki. W wyniku oddziaływania fenobarbitalu wykazano trwałe zmiany metylacji DNA - obniżenie metylacji w rejonie promotorowym genu c-myc i nadekspresję badanego genu na poziomie mRNA. Jednocześnie obserwowano statystycznie istotny wzrost poziomu białka Dnmt1. Wnioski. Wykazano odwrotną zależność między aktywnością Dnmt1 a poziomem metylacji genu c-myc. Nadekspresja c-myc w wyniku demetylacji może stanowić istotne, wczesne zdarzenie w mechanizmie działania (ang. Mechanism of Action (MOA)) fenobarbitalu.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

69

Numer

3

Opis fizyczny

p.307-314,fig.,ref.

Twórcy

  • Department of Toxicology and Health Risk Assessment, National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
  • Department of Toxicology and Health Risk Assessment, National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
  • Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Department of Toxicology and Health Risk Assessment, National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
  • Department of Toxicology and Health Risk Assessment, National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
  • Department of Toxicology and Health Risk Assessment, National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland

Bibliografia

  • 1. Amente S., Lania L., Majello B.: Epigenetic reprogramming of Myc target genes. Am J Cancer Res 2011; 1(3): 413-18.
  • 2. Bachman A.N., Phillips J.M., Goodman J.L.: Phenobarbital induces progressive patterns of GC-rich and gene-specific altered DNA methylation in the liver of tumor-prome B6C3F1 mice. Toxicol Sci 2006; 91(2): 393-405. doi: 10.1093/toxsci/kfj155.
  • 3. Cedar H., Bergman Y.: Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10(5): 295-304. doi:10.1038/nrg2540.
  • 4. Dahl C., Grønbæk K., Guldberg P.: Advances in DNA methylation: 5-hydroxymethylcytosine revisited. Clin Chim Acta 2011; 412(11-12): 831-6. doi:10.1016/j. cca.2011.02.013.
  • 5. Dang C.V.: MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 2013; 3(8). pii: a014217. doi: 10.1101/cshperspect.a014217.
  • 6. Dominguez-Sola D., Gautier J.: MYC and the control of DNA replication Cold Spring Harbor Perspectives in Medicine 2014; 4(6). pii: a014423. Doi:10.1101/ cshperspect.a014423.
  • 7. Donkena K.V., Young Ch.Y.F., Tindall D.J.: Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int 2010; 2010: 302051. doi:10.1155/2010/302051.
  • 8. Dostalek M., Brooks J.D., Hardy K.D., Milne G.L., Moore M.M., Sharma S., Morrow J.D., Guengerich F.P.: In vivo oxidative damage in rats is associated with barbiturate response but not other cytochrome P450inducers. Mol Pharmacol 2007; 72(6): 1419-24. doi: 10.1124/mol.107.040238.
  • 9. Du Y.P., Peng J.S., Sun A., Tang Z.H., Ling W.H., Zhu H.L.: Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model. BMC Cancer 2009; 9: 261. doi:10.1186/1471-2407-9-261.
  • 10. Fielden M.R., Adai A., Dunn R.T., Olaharski A., Searfoss G., Sina J., Aubrecht J., Boitier E., Nioi P., Auerbach S., Jacobson-Kram D., Raghavan N., Yang Y., Kincaid A., Sherlock J., Chen S.J., Car B.; Predictive Safety Testing Consortium, Carcinogenicity Working Group.: Development and evaluation of a genomic signature for the prediction and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat. Toxicol Sci 2011; 124(1): 54-74. doi: 10.1093/toxsci/kfr202.
  • 11. Gardiner-Garden M., Frommer M.J.: CpG islands in vertebrate genomes. J Mol Biol 1987; 196(2): 261-82.
  • 12. Ge R., Tao L., Kramer M. P., Cunningham M.L., Pereira M.A.: Effect of peroxisome proliferators on the methylation and protein level of the c-myc protooncogene in B6C3F1 mice liver. J Biochem Mol Toxicol 2002; 16(1): 41-47.
  • 13. Ge R., Wang W., Kramer P.M., Yang S., Tao L., Pereira M.A.: Wy-14,643-induced hypomethylation of the c-myc gene in mouse liver. Toxicol Sci 2001; 62(1): 28-35.
  • 14. Globisch D., Münzel M., Müller M., Michalakis S., Wagner M., Koch S., Brückl T., Biel M., Carell T.: Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates. PLoS ONE 2010; 5: e15367. doi:10.1371/journal.pone.0015367.
  • 15. Herceg Z.: Epigenetic Mechanisms as an Interface Between the Environment and Genome. Adv Exp Med Biol 2016; 903: 3-15. doi:10.1007/978-1-4899-7678-9_1.
  • 16. Hernández L.G, van Steeg H., Luijten M., van Benthem J.: Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat Res 2009; 682(2-3): 94-109. doi:10.1016/j. mrrev.2009.07.002.
  • 17. IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Thyrotropic Agents. Lyon: International Agency for Research on Cancer. 2001; 79: 161-288.
  • 18. Jeltsch A., R.Z. Jurkowska.: New concepts in DNA methylation. Trends Biochem Sci 2014; 39(7): 310-8. doi:10.1016/j.tibs.2014.05.002.
  • 19. Jin B., Robertson K.D.: DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol. 2013; 754: 3-29. doi:10.1007/978-1-4419-9967-2_1.
  • 20. Kostka G., Urbanek K., Ludwicki J.K.: The effect of Phenobarbital on the methylation level of the p16 promoter region in rat liver. Toxicology 2007; 239(1-2): 127-35. doi:10.1016/j.tox.2007.07.003.
  • 21. Kostka G., Urbanek-Olejnik K., Wiadrowska B.: Dibutyl phthalate-induced hypomethylation of the c-myc gene in rat liver. Toxicol Ind Health 2010; 26(7): 407-16. doi:10.1177/0748233710369124.
  • 22. Koturbas I., Beland F.A., Pogribny I.P.: Role of epigenetic events in chemical carcinogenesis: a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol Mech Methods 2011; 21(4): 289-97. doi:10.3109/15376516.2011.557881.
  • 23. Kutanzi K.R., Koturbash I., Bronson R.T., Pogribny I.P., Kovalchuk O.: Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats. Mutat Res 2010; 694(1-2): 1-6. doi:10.1016/j.mrfmmm.2010.07.006.
  • 24. Lempiäinen H., Müller A., Brasa S., Teo S.S., Roloff T.C., Morawiec L., Zamurovic N., Vicart A., Funhoff E., Couttet P., Schübeler D., Grenet O., Marlowe J., Moggs J., Terranova R.: Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice. PLoS ONE. 2011; 6:e18216. doi:10.1371/journal.pone.0018216.
  • 25. Luisier R., Lempiäinen H., Scherbichler N., Braeuning A., Geissler M., Dubost V., Müller A., Scheer N., Chibout S.D., Hara H., Picard F., Theil D., Couttet P., Vitobello A., GrenetO., Grasl-Kraupp B., Ellinger-Ziegelbauer H., Thomson J.P., Meehan R.R., Elcombe C.R., Henderson C.J., Wolf C.R., Schwarz M., Moulin P., Terranova R., Moggs J.G.: Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors Toxicol Sci 2014; 139(2): 501-11. doi:10.1093/toxsci/kfu038.
  • 26. Miousse IR., Murphy L.A., Lin H., Schisler M.R., Sun J., Chalbot M.G., Sura R., Johnson K., LeBaron M.J., Kavouras I.G., Schnackenberg L.K., Beger R.D., Rasoulpour R.J., Koturbash I.: Dose-response analysis of epigenetic, metabolic, and apical endpoints after shortterm exposure to experimental hepatotoxicants. Food Chem Toxicol 2017;109(Pt 1):690-702. doi:10.1016/j.fct.2017.05.013.
  • 27. Miousse I.R., Currie R., Datta K., Ellinger-Ziegelbauer H., French J.E., Harrill A.H., Koturbash I., Lawton M., Mann D., Meehan R.R., Moggs J.G., O’Lone R., Rasoulpour R.J., Pera R.A., Thompson K.: Importance of investigating epigenetic alterations for industry and regulators: An appraisal of current efforts by the Health and Environmental Sciences Institute. Toxicology 2015; 335: 11-9. doi:10.1016/j.tox.2015.06.009.
  • 28. Mohan K.N., Chaillet J.R.: Cell and molecular biology of DNA methyltransferase 1. Int Rev Cell Mol Biol 2013; 306: 1-42. doi: 10.1016/B978-0-12-407694-5.00001-8.
  • 29. Nishida N., Kudo M.: Alteration of Epigenetic Profile in Human Hepatocellular Carcinoma and Its Clinical Implications. Liver Cancer 2014; 3(3-4): 417-27. doi:10.1159/000343860.
  • 30. Ozden S., Turgut Kara N., Sezerman O.U., Durasi I.M., Chen T., Demirel G., Alpertunga B., Chipman J.K., Mally A.: Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure. Toxicol Appl Pharmacol 2015; 289(2): 203-12. doi:10.1016/j. taap.2015.09.023.
  • 31. Pfaffl M.W., Horgan G.W., Dempfle L.: Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in realtime PCR. Nucleic Acids Res 2002; 30: e36.
  • 32. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.
  • 33. Phillips J.M., Goodman J.I.: Identification of genes that may play critical roles in phenobarbital (PB)-induced liver tumorigenesis due to altered DNA methylation. Toxicol Sci 2008; 104(1): 86-99. doi:10.1093/toxsci/kfn063.
  • 34. Phillips J.M., Yamamoto Y., Negishi M., Maronpot R.R., Goodman J.I.: Orphan nuclear receptor constitutive active/androstane receptor-mediated alternations in DNA methylation during phenobarbital promotion of liver tumorigenesis. Toxicol Sci 2007; 96(1): 72-82. doi:10.1093/toxsci/kfl188.
  • 35. Pogribny I.P., Beland F.A.: DNA methylome alterations in chemical carcinogenesis. Cancer Lett 2013; 334(1): 39-45. doi:10.1016/j.canlet.2012.09.010.
  • 36. Pogribny I.P., Rusyn I.: Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2014; 342(2): 223-30. doi: 10.1016/j.canlet.2012.01.038.
  • 37. Pogribny I.P, Rusyn I.: Environmental Toxicants, Epigenetics, and Cancer. In: Karpf A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology 2013; vol 754. Springer, New York, NY.
  • 38. Pogribny I.P., Tryndyak V.P., Boureiko A., Melnyk S., Bagnyukova T.V., Montgomery B., Rusyn I.: Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver. Mutat Res 2008; 644(1-2): 17-23. doi:10.1016/j.mrfmmm.2008.06.009.
  • 39. Pogribny I.P., Tryndyak V.P., Woods C.C., Witt S.E., Rusyn I.: Epigenetic effects of the continuous exposure to peroxisome proliferator Wy-14,643 in mouse liver are dependent upon peroxisome proliferator-activated receptor alpha. Mutat Res 2007; 625(1-2): 62-71. doi:10.1016/j.mrfmmm.2007.05.004.
  • 40. Stefanska B., Huang J., Bhattacharyya B., Suderman M., Hallett M., Han Z.G., Szyf M.: Definition of the Landscape of Promoter DNA Hypomethylation in Liver Cancer. Cancer Res 2011; 71(17): 5891-903. doi: 10.1158/0008-5472doi:10.1158/0008-5472.CAN-10-3823.
  • 41. Stine, Z.E., Walton Z.E., Altman B.J., Hsieh A.L., Dang C.V.: MYC, Metabolism, and Cancer. Cancer Discov 2015; 5(10): 1024-39. doi:10.1158/2159-8290.CD-15-0507.
  • 42. Szyf M, McGowan P., Meaney M.J.: The Social Environment and the Epigenome. Environ Mol Mut 2008; 49(1): 46-60. doi:10.1002/em.20357.
  • 43. Tao L., Wang W., Li Y., Kramer P.M., Pereira M.A.: Effect of dibromoacetic acid on DNA methylation, glycogen accumulation, and peroxisome proliferation in mouse and rat liver. Toxicol Sci 2004; 82(1): 62-69. doi:10.1093/toxsci/kfh266.
  • 44. Tasaki M., Umemura, Suzuki T. Y., Hibi D., Inoue T., Okamura T., Ishii Y., Maruyama S., Nohmi T., Nishikawa A.: Oxidative DNA damage and reporter gene mutation in the livers of gpt delta rats given nongenotoxic hepatocarcinogens with cytochrome P450-inducible potency. Cancer Sci 2010; 101(12): 2525-30. doi:10.1111/j.1349-7006.2010.01705.x.
  • 45. Tien Y.C., Liu K., Pope C., Wang P., Ma X., Zhong X.B.: Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver. Drug Metab Dispos 2015; 43(12): 1938-45. doi:10.1124/dmd.115.066316.
  • 46. Uehara T., Minowa Y., Morikawa Y., Kondo C., Maruyama T., Kato I., Nakatsu N., Igarashi Y., Ono A., Hayashi H., Mitsumori K., Yamada H., Ohno Y., Urushidani T.: Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 2011; 255(3): 297-306. doi:10.1016/j.taap.2011.07.001.
  • 47. Urbanek-Olejnik K., Liszewska M., Kostka G.: The effect of phenobarbital on gene expression levels of p53 and Dnmt1 in the liver of Wistar rats. Rocz Panstw Zakl Hig 2014; 65(1): 199-203.
  • 48. Waterman C.I., Currie R.A., Cottrell L.A., Dow J., Wright J., Waterfield C.J., Griffin J.L.: An integrated functional genomic study of acute Phenobarbital exposure in the rat. BMC Genomic 2010; 11: 1-17. doi:10.1186/1471-2164-11-9.
  • 49. Zhang Y.: Detection of epigenetic aberrations in the development of hepatocellular carcinoma. Methods Mol Biol 2015; 1238: 709-31. doi:10.1007/978-1-4939-1804-1_37.
  • 50. Ziech D., Franco R., Pappa A., Panayiotidis M.I.: 2011. Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 2011; 71(1-2): 167-73. doi:10.1016/j.mrfmmm.2011.02.015

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3f29e260-c6e3-4aff-8a4c-6b4fd5a271e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.