PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 08 | 1 |

Tytuł artykułu

Changes in leukocyte HSPA1A, HSPB1 mRNA in basketball players after plyometric training

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Exercise-induced stressors activate leukocyte HSPA1A and HSPB1 gene transcripts. However it is not clear how plyometric training affects the expression of these genes in basketball players under plyometric exercise. Therefore, the aim of this study was to investigate the changes in leukocyte HSPA1A and HSPB1 mRNA, in male basketball players after plyometric training. Material/Methods: Twelve male college basketball players (age 22.1 ±2.96 years) took part in this study. Peripheral blood (2.0 ml) was collected from the ulnar vein of each participant before and after a plyometric exercise to assess HSPA1A and HSPB1 mRNA relative expression of leukocyte via quantitative reverse transcription polymerase chain reaction. Results: A significant increment of leukocyte HSPA1A mRNA expression (Qt from 1.67 ±0.93 to 3.17 ±0.97, p = 0.003) after plyometric exercise was found. However, there was no significant change in leukocyte HSPB1 mRNA expression, indicating the high stability of this gene during exercises. Conclusions: HSPA1A mRNA was found to be a very sensitive indicator and could be used to assess physiological adaptation to a physical load and time requirements for complete recovery in basketball players.

Słowa kluczowe

Twórcy

autor
  • Department of Life Sciences, Gdansk University of Physical Education and Sport, Gdansk, Poland
  • Department Department of Theory of Sport, Lithuanian University of Educational Sciences, Vilnius, Lituania
autor
  • Department of Health and Physical Education, Lithuanian University of Educational Sciences, Vilnius, Lituania
  • Department Department of Theory of Sport, Lithuanian University of Educational Sciences, Vilnius, Lituania
  • Department of Sports Management, Gdansk University of Physical Education and Sport, Gdansk, Poland

Bibliografia

  • [1] Manzi V, D’Ottavio S, Impellizzeri FM, Chaouachi A, Chamari K, Castagna C. Profile of weekly training load in elite male professional basketball players. J Strength Cond Res. 2010;24(5):1399-406.
  • [2] Gonzales MM, Tarumi T, Kaur S, Nualnim N, Fallow BA, Pyron M, Tanaka H, Haley AP. Aerobic fitness and the brain: increased N-acetyl-aspartate and choline concentrations in endurance-trained middle-aged adults. Brain Topogr. 2013 ;26(1):126-34.
  • [3] Kaźmierczuk A, Kiliańska Z. Plejotropowa aktywność białek szoku cieplnego [The pleiotropic activity heat shock proteins]. Postępy Hig Med Dosw. 2009;63:502-521. Polish.
  • [4] Łaszczyńska J, Seweryn P. Indukcja białka szoku termicznego HSP-70 w limfocytach ludzkich pod wpływem stresu cieplnego symulującego warunki nagrzanego kokpitu [Induction of heat shock protein HSP-70 in human lymphocytes under heat stress conditions simulating heated cockpit]. Pol Przegl Med Lotn. 2007;13(4):435-443. Polish.
  • [5] Morimoto RI. Regulation of the heat shock transcriptional response; cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998;12:3788-3796.
  • [6] Pyne DB. Exercise-induced muscle damage and inflammation. A review. J Sci Med Sport. 1994;26:49-58.
  • [7] Radák Z, Naito H, Kaneko T, et al. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch. 2002;445(2):273-278.
  • [8] Nielsen HG, Skjønsberg OH, Lyberg T. Effect of antioxidant supplementation on leucocyte expression of reactive oxygen species in athletes. Scand J Clin Lab Invest. 2008;68(7):526-533.
  • [9] Radom-Aizik S, Zaldivar F Jr., Leu SY, Galassetti P, Cooper DM. Effects of 30 min of aerobic exercise on gene expression in human neutrophils. J Appl Physiol. 2008;104:236-243 .
  • [10] Büttner P, Mosig S, Lechtermann A, Funke H, Mooren FC. Exercise affects the gene expression profiles of human white blood cells. J Appl Physiol. 2006;102(1):26-36.
  • [11] Maltseva DV, Ryabenko EA, Sizova SV, Yashin DV. Effect of Exercise on the Expression of HSPBP1, PGLYRP1, and HSPA1A Genes in Human Leukocytes. Bull Exp Biol Med. 2012;153(6):866-868.
  • [12] Ryan AJ, Gisolfi CV, Moseley PL. Synthesis of 70K stress protein by human leukocytes: effect of exercise in the heat. J Appl Physiol . 1991;70:466-471.
  • [13] Lui Y, Lormes W, Baur C, Opitz-Gress A, Altenburg D, Lehmann M, Steinacker JM. Human skeletal muscle Hsp70 response to physical training depends on exercise intensity. Int J Sports Med. 2000;21:351-355.
  • [14] Neubauer O, Sabapathy S, Lazarus R, et al. Transcriptome analysis of neutrophils after endurance exercise reveals novel signaling mechanisms in the immune response to physiological stress. J Appl Physiol. 2013; 114(12):1677-1688.
  • [15] Fehrenbach E, Passek F, Niess AM, et al. HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc. 2000;32:592-600.
  • [16] Zeibig J, Karlic H, Lohninger A, Damsgaard R, Smekal G. Do blood cells mimic gene expression profile alterations known to occur in muscular adaptation to endurance training? Eur J Appl Physiol. 2005; 95(1):96-104.
  • [17] Büttner P, Mosig S, Lechtermann A, Funke H, Mooren CF. Exercise affects the gene expression profiles of human white blood cells. Acta Physiol Scand. 1996;157(4):411-417.
  • [18] Kregel KCJ. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Appl Physiol. 2002; 92(5):2177-2186.
  • [19] Chomczyński P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156-159.
  • [20] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101-1108.
  • [21] Wang XY, Subject JR. High molecular weight stress protein: identification, cloning and utilization in cancer immunotherapy. Int J Hyperthermia. 2013; 29(5): 364-375.
  • [22] Arya R, Mallik M, Lakhotia SC. Heat shock genes-integrating cell survival and death. J Biosci. 2007;32:595-619.
  • [23] Donnikov AE, Shkurnikov MU, Akimov EB, Tonevitsky AG. Relationship between the degree of cardiovascular adaptation and Th1/Th2 polarization of immune response. Bull Exp Biol Med. 2008;146(4):462-465.
  • [24] Yoshioka M, Tanaka H, Shono N, Snyder EE, Shindo M, St-Amand J. Serial analysis of gene expression in the skeletal muscle of endurance athletes compared to sedentary men. FASEB J. 2003;17(13):1812-1819.
  • [25] Sakharov DA, Maltseva DV, Riabenko EA, et al. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. Eur J Appl Physiol. 2012;112(3):963-972.
  • [26] Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol. 2012;44(10):1622-1631.
  • [27] Lanneau D, Wettstein G, Bonniaud D, Wettstein G, Bonniaud Ph, Garrido C. Heat Shock Proteins: Cell Protection. The Scientific World J. 2010;10:1543-1552.
  • [28] Nagaraja GM, Kaur P, Asea A. Role of human and mouse HSPB1 in metastasis. Curr Mol Med. 2012;12(9):1142-1150.
  • [29] Ecochard L, Lhenry F, Sempore B, Favier R. Skeletal muscle HSP72 level during endurance training: influence of peripheral arterial insufficiency. Pflugers Arch. 2000;40(6):918-924.
  • [30] Halliwell B, Gutteridge JM. Free radicals in biology and medicine. New York: Oxford University Press, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3f0a005a-4f68-4bb8-9d06-122a43d044ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.