PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 19 | 4 |

Tytuł artykułu

The investigation of correlation among selected biochemical parameters and vital signs in dairy herd to design the bio-cybernetic dairy cow model

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper presents investigations of the relationship between the biochemical parameters and vital signs in dairy cows. We analyzed the welfare and functioning of a dairy herd using biochemical parameters and vital signs. Life and biochemical parameters were examined. In the model indicators useful for monitoring the herd are: the age of the cows, the number of cows’ lactating, daily amount of received milk, length of lactation period for cows in the herd, the length of inter-calving period for cows, the number of days to effective insemination, the amount of protein in the feed, the level of β-oxidation in leucocytes, glucose transport through red blood cells and plasma insulin. Based on the results the mathematical model was designed allowing the presentation of a cybernetic model of cow’s organism. There was constructed a multi-equation model which determined the relationships between the selected variables describing the state of dairy cows in the herd and variables that characterize their welfare with its statistical verification.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.685-695,fig.,ref.

Twórcy

autor
  • Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
autor
  • University Centre for Veterinary Medicine of Jagiellonian University and University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Cybernetics Faculty, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
autor
  • Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
autor
  • Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland

Bibliografia

  • Baaijen M, Pérez E (1995) Information technology in the Costa Rican dairy sector: A key instrument in extension and on-farm research. Agric Hum Values Volume 12: 45-51
  • Bar-Yam Y (1997) Dynamics of Complex Systems. Addison Wesley.
  • Bergman MA, Richert MR, Cicconi-Hogan KM, Gamroth MJ, Schukken YH, Stiglbauer KE, Ruegg PL (2012) Comparison of selected animal observations and management practices used to assess welfare of calves and adult dairy cows on organic and conventional dairy farms. J Dairy Sci 97: 4269-4280
  • Brody S (1924) The kinetics of senescence. J Gen Physiol 6: 245-257
  • Brody S, Turner CW, Ragsdale AC (1924) The relation between the initial rise and the subsequent decline of milk secretion following parturition. J Gen Physiol 6: 541-545.
  • Bruijnis MR, Hogeveen H, Stassen EN (2010) Assessing economic consequences of foot disorders in dairy cattle using a dynamic stochastic simulation model. J Dairy Sci 93: 419-2432.
  • Cankaya S, Unalan A, Soydan E (2011) Selection of a mathematical model to describe the lactation curves of Jersey cattle. Archiv Tierzucht 54: 27-35.
  • Derks M, Hogeveen H, Kooistra SR, Van Werven T, Tauer LW (2014) Efficiency of dairy farms participating and not participating in veterinary herd health management programs. Prev Vet Med 117: 478-486.
  • Debski B, Kuryl T, Gralak MA, Pierzynowska J, Drywien M (2011) Effect of inulin and oligofructose enrichment of the diet on rats suffering thiamine deficiency. J Anim Pysiol Anim Nutr 95: 335-342.
  • Eastwood CR, Chapman DF, Paine MS (2012) Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia. Agr Syst 108: 10-18.
  • Green WH (2011) Econometric analysis, Prentice Hall 2003.
  • Haile-Mariam M, Pryce JE (2015) Variances and correlations of milk production, fertility, longevity, and type traits over time in Australian Holstein cattle. J Dairy Sci 98: 7364-7379.
  • Hansson H, Lagerkvist CJ (2014) Decision Making for Animal Health and Welfare. Integrating Risk-Benefit Analysis with Prospect Theory. Risk Anal 34: 149-1159.
  • Janzekovic M, Rozman C, Pazek K, Pevec P (2014) Mathematical model for balancing feed rations in dairy cow. In: Katalinic B (ed) DAAAM International Scientific Book, pp 153-162.
  • Klop G, Ellis JL, Bannink A, Kebreab E, France J, Dijkstra J (2013) Meta-analysis of factors that affect the utilization efficiency of phosphorus in lactating dairy cows. J Dairy Sci 96: 3936-3949.
  • Kuryl T, Adamowicz M, Debski B, Bertrandt J, Martynik K (2001) Degradation of [9,10]-3H- myristic acid by lymphocytes. Screening test of inherited disorders of activation, transport and mitochondrial oxidation of fatty acids. Atheroskleroza 5: 23-27.
  • Lam TJ, DeJong MC, Schukken YH, Brand A (1996) Mathematical Modeling to estimate efficacy of postmilking teats disinfection in split-udder trials of dairy cows. J Dairy Sci 79: 62-70.
  • Lee DN, Yen HT, Shen TF, Chen BJ (2000) Chromium-induced glucose uptake, superoxide anion production and phagocytosis in cultured pulmonary alveolar macrophages of weanling pigs. Biol Trace Elem Res 77: 53-64.
  • Leon-Velarde CU, Quiroz R (2001) Modeling cattle production systems: integrating components and their interactions in the development of simulation models. In: Proceedings – Third International Symposium on Systems Approaches for Agricultural Development, Lima Peru. p 18.
  • Macciotta NP, Dimauro C, Rassu SP, Steri R, Pulina G (2005, a) The mathematical description of lactation curves in dairy cattle. Ital J Anim Sci 10: e51.
  • Macciotta, NPP, Vicario, D, Cappio-Borlino A (2005, b) Detection of different shapes of lactation curve for milk yield in dairy cattle by empirical mathematical models. J Dairy Sci 88: 1178-1191.
  • Manning N.J., Olpin S.E., Pollitt R.J., Webley J.: A comparison of [9,10-3H] palmitic and [9,10-3H]myristic acid for the detection of defects of fatty acid oxidation in intact cultured fibroblast. J Inherited Metab Disease 13: 58-68.
  • Mantysaari P, Mantysaari E (2012) Modeling of daily body weights and body weight changes of Nordic Red cows. J Dairy Sci 98: 6992-7002.
  • Matthews LR, Cameron C, Sheahan AJ, Kolver ES, Roche JR (2012) Associations among dairy cow body condition and welfare-associated behavioral traits. J Dairy Sci 95: 2595-2601.
  • Murphy MD, O’Mahony MJ, Shalloo L, French P, Upton J (2014) Comparison of modeling techniques for milk-production forecasting. J Dairy Sci 97: 3352-3363.
  • Murray JD (2002) Mathematical Biology I: An Introduction. Springer-Verlag.
  • Nguyen TT, Doreau M, Corson MS, Eugene M, Delaby L, Chesneau G, Gallard Y, van der Werf HM (2013) Effect of dairy production system, breed and co-product handling methods on environmental impacts at farm level. J Environ Manag 120: 127-137.
  • Nie J, Sun G-Q, Sun X-D, Zhang J, Wang H (2014) Modeling the transmission dynamics of dairy cattle brucellosis in Jilin province, China J Biol Syst 22: 533-535.
  • Radkowska I, Herbut E (2014) Hematological and biochemical blood parameters in dairy cows depending on the management system. Anim Sci Pap Rep 32: 317-325.
  • Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ, Berry DP (2009) Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J Dairy Sci 92: 5769-5801.
  • Ross AW (1963) An Introduction to Cybernetics, John Wiley & Sons Silvestre AM, Petim-Batista F, Colaco J (2006) The accuracy of seven mathematical functions in modeling dairy cattle lactation curves based on test-day records from varying sample schemes. J Dairy Sci 89: 1813-1821.
  • Silvestre AM, Almeida JC, Santos VA, Fontes PJ, Alves VC (2010) Modeling lactation curves of „Barrosa” beef cattle with Wood’s model. Ital J Anim Sci 9: 244-247.
  • Tosi MV, Canali E, Gregoretti L, Ferrante V, Rusconi C, Verga M, Carenzi C (2012) A Descriptive Analysis of Welfare Indicators Measured on Italian Dairy Farms: Preliminary Results. Acta Agric Scand Sect A – Animal Sci (Suppl 30): 69-72.
  • Uden P, Danfaer A (2008) Modeling glucose metabolism in the dairy cow. A comparison of two dynamic models. Anim Feed Sci Technol 143: 59-69.
  • Vargas B, Koops WJ, Herrero M, Van Arendonk JA (2000) Modeling extended lactations of dairy cows, J Dairy Sci 83: 1371-1380.
  • Vergara CF, Do¨pfer D, Cook NB, Nordlund KV, McArt JAA, Nydam DV, Oetzel GR (2014) Risk factors for postpartum problems in dairy cows: Explanatory and predictive modeling. J. Dairy Sci. 97: 4127-4140.
  • Wiener N (1965) Cybernetics or the control and communication in the animal and the machine. MIT Press.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3e1f576e-e3f7-4d15-88b7-e7e3b079183c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.