PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 04 |

Tytuł artykułu

The system modulating ROS content in germinating seeds of two Brazilian savanna tree species exposed to As and Zn

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of increasing arsenic (0, 10, 50, 100 mg L-1) and zinc (0, 50, 80, 120, 200 mg L-1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L-1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L-1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L-1.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

04

Opis fizyczny

p.1011-1022,fig.,ref.

Twórcy

autor
  • Institut des Sciences de l’environnement, Universite´ du Que´bec a` Montre´al, Succ. Centre-Ville, C.P. 8888, Montreal, QC H3C 3P8, Canada
  • Departamento de Biologia, Universidade Federal de Lavras (UFLA), Campus UFLA, C.P. 3037, Lavras, MG 37200-000, Brazil
  • Departamento de Biologia, Universidade Federal de Lavras (UFLA), Campus UFLA, C.P. 3037, Lavras, MG 37200-000, Brazil
  • Departamento de Biologia, Universidade Federal de Lavras (UFLA), Campus UFLA, C.P. 3037, Lavras, MG 37200-000, Brazil
autor
  • Departamento de Biologia, Universidade Federal de Lavras (UFLA), Campus UFLA, C.P. 3037, Lavras, MG 37200-000, Brazil
autor
  • Departamento de Botaˆnica, Instituto de Cieˆncias Biolo´gicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antonio Carlos 6627 Pampulha, C.P. 486, Belo Horizonte, MG 31270-970, Brazil

Bibliografia

  • Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66
  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126
  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. CR Biol 330: 735–746
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399
  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107
  • Bailly C, Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling net-works to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol 331:806–814
  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310
  • Cao X, Ma LQ, Tu C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325
  • Ҫavuşoğlu K, Ergene A, Yalc¸in E, Tan S, Ҫavuşoğlu K, Yapar K (2009) Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L. Fresen Environ Bull 18:1654–1661
  • Chun-Xi LI, Feng SL, Shao Y, Jiang L, Lu XY, Hou XL (2007) Effects of arsenic on seed germination and physiological activities of wheat seedling. J Environ Sci 19:725–732
  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109
  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25
  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications. Antioxid Redox Signal 11:861–905
  • Gechev TS, Breusegem FV, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314
  • Gomes MP (2011) Contribution of mycorrhizal fungi in arsenictolerance of Anadenanthera peregrina (L.) Speg. and Brachiaria decumbens Stapf. Master Thesis, Universidade Federal de Minas Gerais, Brazil
  • Gonc¸alves JF, Becker AG, Cargnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19:223–232
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Hendry GAF (1993) Oxygen, free radical processes and seed longevity. Seed Sci Res 3:141–153
  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611
  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436
  • Kjaer C, Pedersen MB, Elmegaard N (1998) Effects of soil copper on black bindweed (Fallopia convolvulus) in the laboratory and in the field. Arch Environ Contam Toxicol 35:14–19
  • Kranner I, Colville LE (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105
  • Kuriakose SV, Prasad MNV (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156
  • Lefevre I, Marchal G, Corréal E, Zanuzzi A, Lutts S (2009) Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regul 59:1–11
  • Leymarie J, Vitkauskaité G, Hoang HH, Gendreau E, Chazoule V, Meimoun P, Cornineau F, El-Maarouf-Bauteau H, Bailly C (2012) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol 53:96–106
  • Li WQ, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50
  • Li CX, Feng SL, Shao Y, Jiang LN, Lu XY, Hou XL (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19:725–732
  • Lin CW, Lin CY, Chang CC, Lee RH, Tsai TM, Chen PY, Chi WC, Huan HJ (2009) Early signalling pathways in rice roots under vanadate stress. Plant Physiol Biochem 47:369–376
  • Liu X, Zhang S, Shan X, Christie P (2007) Combined toxicity of cadmium and arsen-ate to wheat seedlings and plant uptake and antioxidative responses to cadmium and arsenate co-contamination. Ecotox Environ Safe 68:305–313
  • Madzhugina Y, Kuznetsov V, Shevyakova N (2008) Plants inhabiting polygons for megapolis waste as promising species for phytoremediation. Russ J Plant Physiol 55:410–419
  • Maheshwari R, Dubey R (2008) Inhibition of ribonuclease and protease activities in germinating rice seeds exposed to nickel. Acta Physiol Plant 30:863–872
  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43
  • Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885–897
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach cloroplasts. Plant Cell Physiol 22:867–880
  • O’Kane D, Gill V, Boyd P, Burdon R (1996) Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377
  • Oracz K, Bailly C, Gniazdowska A, Coˆme D, Corbineau F, Bogatek R (2007) Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds. J Chem Ecol 33:251–264
  • Oracz K, El-Maarouf-Bauteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505
  • Ozdener Y, Kutbay HG (2009) Toxicity of copper, cadmium, nickel, lead and zinc on seed germination and seedling growth in Eruca sativa. Fresen Environ Bull 18:26–31
  • Pandey V, Dixit V, Shyam R (2009) Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma 235:49–55
  • Pergo EM, Ishii-Iwamoto EL (2011) Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. J Chem Ecol 37:500–513
  • Polidoros AN, Scandalios JG (1999) Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression inmaize (Zea mays L.). Physiol Plant 106:112–120
  • Pompeu GB, Gratão PL, Vitorello VA, Azevedo RA (2008) Antioxidant isoenzyme responses to nickel-induced stress in tobacco cell suspension culture. Sci Agricola 65:548–552
  • Romero-Puertas MC, Palma JM, Go´mez M, del Rı´o LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686
  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365
  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50
  • Siddiqui S, Meghvansi M, Wani M, Jabee F (2009) Evaluating cadmium toxicity in the root meristem of Pisum sativum L. Acta Physiol Plant 31:531–536
  • Street RA, Kulkarni MG, Stirk WA, Southway C, Van Staden J (2007) Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to Hyacinthaceae. Bull Environ Contam Toxicol 79:371–376
  • Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30:389–394
  • Wang CR, Wang XR, Tian Y, Yu HX, Gu XY, Du WC, Zhou H (2008) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem 27:970–977

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3d5d96c0-91c1-4aba-ad52-18a83c0bd37b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.