PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 2 |

Tytuł artykułu

Effect of the phosphorus content in a nutrient solution on the expression of genes encoding phosphorus transporters in tomato grown on different substrates

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Effects of the phosphorus content in a nutrient solution (15 or 50 mg P dm-3), growing substrate (rockwool or coconut fiber) and the plant growth stage (for roots: 71 or 113 days after transplanting DAT; for leaves: 71 or 92 DAT) on the chemical composition of roots, the phosphorus content in leaves and the expression of genes encoding proteins involved in the transport of phosphorus from the medium to the plant were investigated in tomato cv. Admiro F1 grown in a foil tunnel. A fertigation system without recirculation was used. Regardless of the plant age and growing substrate, tomatoes fertilized with a nutrient solution containing 50 mg P dm-3 had more phosphorus, iron, boron and copper in roots and more phosphorus in leaves. Irrespective of the stage of plant growth and phosphorus level in the medium, the content of almost all macro- and microelements was higher in roots of plants grown in rockwool than in coconut fiber. The stage of plant growth significantly affected the mineral composition of roots as well as the P content in tomato leaves. More phosphorus was stored in roots of younger plants, whereas the phosphorus content was lower in younger than in older leaves. Our analysis of the gene expression showed that transporters encoded by LePT1-LePT4 were involved in phosphate nutrition. Expression of the genes was generally (except LePT4) higher in plants treated by the solution containing 15 mg P dm-3 than in plants treated by 50 mg P dm-3. The expression of genes LePT2, LePT3 in roots of older plants (113 DAT) was generally higher than in young plants.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.477-490,fig.,ref.

Twórcy

  • Laboratory for Basic Research in Horticulture, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
autor
  • Unit of Plant Nutrition, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Krakow, Poland

Bibliografia

  • Abd-Alla M., Adam M., Abou-Hadid F., Iman B. 1996. Temperature and fertilizer effects on tomato productivity. Acta Hort., 434: 113-116.
  • Al-Karaki G.N. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci. Hort., 109: 1-7.
  • Atherton J.G., Rudisch J. 1986. The tomato crop. Chapman and Hall, London, New York, pp. 281-334.
  • Balestrini R., Gómez-Ariza J., Lanfranco L., Bonfante P. 2007. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant-Microbe Interact., 9: 1055-1062.
  • Bar-Yosef B., Imas P. 1995. Phosphorus fertigation and growth substrate effects on dry matter production and nutrient contents in greenhouse tomatoes. Acta Hort., 401: 337-346.
  • Chen A., Chen X., Wang H., Liao D., Gu M., Qu H., Sun S., Xu G. 2014. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BioMed Central Plant Biology, 14: 61.
  • Chohura P., Komosa A. 2003. Nutrition status of greenhouse tomato grown in inert media. Part I. Macroelements. Acta Sci. Pol. Hort. Cult., 2(2): 3-13.
  • Daram P., Brunner S., Persson B.L., Amrhein N., Bucher M. 1998. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta, 206: 225-233.
  • Furihata T., Suzuki M., Sakurai H. 1992. Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiol., 33: 1151-1157.
  • Gasic K., Hernandez A., Korban S. 2004. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol. Biol. Report, 22: 437a-437g.
  • Heinen M., Mollier A., De Willigen P. 2003. Growth of a root system described as diffusion. II. Numerical model and application. Plant Soil, 252: 251-265.
  • Javot H., Penmetsa R.V., Terzaghi N., Cook D.R., Harrison M.J. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA, 104: 1720-1725.
  • Karagiannidis N., Nikolaou N., Ipsilantis I., Zioziou E. 2007. Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza, 18(1): 43-50.
  • Karandashov V., Bucher M. 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci., 10: 22-29.
  • Kowalska I. 2004. The effect of different sulphate levels in the nutrient solution and type of medium on the yield, mineral composition and quality of tomato grown in the NFT. Acta Sci. Pol. Hort. Cult., 3(1): 153-164. (in Polish)
  • Liu C., Muchhal M.S. Uthapp a M., Kononowicz A.K., Raghothama K.G. 1998a. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol., 116: 91-99.
  • Liu H., Trieu A.T., Blaylock L.A., Harrison M.J. 1998b. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol. Plant-Microbe Interact., 11: 14-22.
  • Marschner H. 1995. Mineral nutrition of higher plants. Academic Press. Muchhal U.S., Raghothama K.G. 1999. Transcriptional regulation of plant phosphate transporters. Proc. Natl. Acad. Sci. USA, 96: 5868-5872.
  • Mukatira U., Liu C., Varadarajan D.K., Raghothama K.G. 2001. Negative regulation of phosphate starvation induced genes. Plant Physiol., 127: 1854-1862.
  • Paslawski P., Migaszewski Z.M. 2006. The quality of element determinations in plant materials by instrumental methods. Pol. J Environ. Stud., 15(2a): 154-164.
  • Raghothama K.G. 1999. Phosphate acquisition. Annu Rev. Plant Physiol. Plant Mol. Biol., 50: 665-693.
  • Raghothama K.G. 2000. Phosphate transport and signaling. Curr. Opin. Plant Biol., 3: 182-187.
  • Reuter D.J., Robinson J.B. 1997. Plant analysis. An interpretation manual. CSIRO Publishing, Melbourne, Australia.
  • Rosewarne G.M., Barker S., Smith S.E., Smith F.A., Schachtman D.P. 1999. A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol., 507-516.
  • Sady W., Domagała I., Gustkowicz M. 1998. Assessment of the suitability of 5 greenhouse tomato cultivars for cultivation in rockwool. Zesz Nauk AR Kraków, 333: 285-288. (in Polish)
  • Sainju M., Dris R., Singh B. 2003. Mineral nutrition of tomato. Food Agr. Environ., 1(2): 176-183.
  • Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evolution, 4: 406-425.
  • Tamura K., Nei M., Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA, 101: 11030-11035.
  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evolution, 30: 2725-2729.
  • Wang Y.H., Garvin D.F., Kochian L.V. 2002. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol., 130(3): 1361-1370.
  • Żebrowska E., Ciereszko I. 2007. Phosphate uptake and transport in plant cells. Post. Biol. Kom., 34: 283-298. (in Polish)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3c6afa8c-8d3d-45c5-a1af-33e2e8a9fce6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.