PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |

Tytuł artykułu

Distribution and environmental determinants of chironomids (Diptera, Chironomidae) in Sphagnum microhabitats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our study investigates the role of Sphagnum mosses as habitat for chironomid larvae with regard to peatbog type (raised bog, transitional bog, fen). Samples were collected within Roztocze National Park (eastern Poland) from May to October 2012 with two monthly intervals. Studied peatbog types differ significantly in terms of density and domination structure of Sphagnum-associated chironomids. The results of CCA analysis indicated that pH, N-NO₃, and chlorophyll-a are significant for chironomid distribution between peatbog types. Moreover, chironomid assemblages were affected by environmental factors specific for a given peatbog type. Temperature and chlorophyll-a determined the chironomid assemblage in raised bogs. Water level, temperature, and total phosphorous were significant for chironomid structure in transitional bogs, whereas conductivity affected chironomids associated with Sphagnum in fens. Sphagnum mosses in transitional bogs were the preferred habitat for larval chironomids in this study. In transitional bogs chironomid density was the highest and typical, macrophyte-associated taxa, larvae of Psectrocladius sordidellus gr. (Zetterstedt, 1838), Cricotopus sylvestris gr. (Fabricius, 1794), and Glyptotendipes sp., were dominant. In raised bogs and fens, pelophilous taxa, larvae of Chironomus sp., and Procladius sp. showed higher abundances.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.483-490,fig.,ref.

Twórcy

  • Department of Hydrobiology, University of Life Sciences, Dobrzanskiego 37, 20-262 Lublin, Poland
autor
  • Department of Hydrobiology, University of Life Sciences, Dobrzanskiego 37, 20-262 Lublin, Poland

Bibliografia

  • 1. WOODCOCK T., LONGCORE J., MCAULEY D., MINGO T., BENNATTI C.R., STROMBORG K. The role of pH in structuring communities of marine wetlands macrophytes and chironomid larvae (Diptera). Wetlands 25, 306, 2005.
  • 2. LANGDON P.G., RUIZ Z., WYNNE S., SAYER C.D., DAVIDSON T.A. Ecological influences on larval chironomid communities in shallow lakes: implications for paleolimnological interpretations. Freshwater Biol. 55, 531, 2010.
  • 3. TAYLOR A.N., BATZER D.P. S patial and temporal variation in invertebrate consumer diets in forested and herbaceous wetlands. Hydrobiologia 651, 145, 2010.
  • 4. ANDERSON T.J., STELZER R.S., DRECKTRAH H.G., EGGERT S.L. Secondary production of Chironomidae in a large eutrophic lake: implications for lake sturgeon production. Freshwater Science 31, 365, 2012.
  • 5. KOVALENKO K.E., CIBOROWSKI J.J.H., DALY C., DIXON D.G., FARWELL A.J., FOOTE A.L., FREDERICK K.R., GARDNER-COSTA J.M., KENNEDY K., LIBER K., ROY M.C., SLAMA C.A., SMITS J.E.G. Food web structure in oil sands reclaimed wetlands. Ecol. Appl. 23, 1048, 2013.
  • 6. WILLIAMS D.D., HEEG N., MAGNUSSON A.K. Habitat background selection by colonizing intermittent pond invertebrates. Hydrobiologia 592, 487, 2007.
  • 7. BHAT S.U., DAR G.A., SOFI A.H., DAR N.A., PANDIT A.K. Macroinvertebrate community associations on three different macrophyte species in Manasbal Lake. Res. J. Environ. Sci. 6, 62, 2012.
  • 8. DE LIMA BEHREND R.D., TEIXEIRA M.C., PRATAFERNANDES S.E., CARVAHLO-CAMARGO J., ROSIN G.C., MICHIYO-TAKEDA A. Effects of a native and a nonnative macrophyte species of Hydrocharitaceae on Chironomidae and Oligochaeta assemblages structure. Acta Sci. Biol. Sci. 35, 351, 2013.
  • 9. ROSA B.F.J.V., DIAS-SILVA M.V.D., ALVES R.G. Composition and Structure of the Chironomidae (Insecta: Diptera) Community Associated with Bryophytes in a First-Order Stream in the Atlantic Forest, Brazil. Neotrop. Entomol. 42, 15, 2013.
  • 10. CAÑEDO-ARQÜELLES M., RIERADEVALL M. Quantification of environment-driven changes in epiphytic macroinvertebrate communities associated to Phragmites australis. J. Limnol. 68, 229, 2009.
  • 11. MAASRI A., FAYOLLE S., FRANQUET E. Algal foraging by a rheophilic chironomid (Eukiefferiella claripennis Lundbeck) extensively encountered in high nutrient enriched streams. Fundam. Appl. Limnol. 177, 151, 2010.
  • 12. TARKOWSKA-KUKURYK M. Composition and distribution of epiphytic midges (Diptera: Chironomidae) in relation to emergent macrophytes cover in shallow lakes. Pol. J. Ecol. 59, 141, 2011.
  • 13. GALIZZI M.C., ZILLI F., MARCHESDE M. Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Parana River floodplain (Argentina). Iheringia, Ser. Zool. 102, 117, 2012.
  • 14. VAN DER VALK A.G., The biology of freshwater wetlands, Second Edition, 2012.
  • 15. WAZBINSKI K.E., QUINLAN R. Midge (Chironomidae, Chaoboridae, Ceratopogonidae) assemblages and their relationship with biological and physicochemical variables in shallow, polymictic lakes. Freshwater Biol. 58, 2464, 2013.
  • 16. BRAGAZZA L., LIMPENS J., GERDOL R., GROSVERNIER P., JEK M., HAJEK T., HAJKOVA P., HANSEN I., IACUMIN P., KUTNAR L., RYDIN H., TAHVANAINEN T. Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob. Change Biol. 11, 106, 2005.
  • 17. HAJEK T., BECKETT R.P. Effect of water content components on desiccation and recovery in Sphagnum mosses. Ann. Bot. 101, 165, 2008.
  • 18. POULIOT R., ROCHEFORT L., KAROFELD E., MERCIER C. Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: Is there a link? Acta Oecol. 37, 346, 2011.
  • 19. LAMENTOWICZ M., MITCHELL E.A.D. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microbial Ecol. 50, 48, 2005.
  • 20. GILBERT D., MITCHELL E.A.D. Microbial diversity in Sphagnum peatlands. Developments in Earth Surface Processes 9, 287, 2006.
  • 21. MIECZAN T. Ecology of testate amoebae (Protists) in Sphagnum peatlands of eastern Poland: Vertical micro-distribution and species assemblages in relation to environmental parameters. Ann. Limnol.-Int. J. Lim. 45, 41, 2009.
  • 22. MIECZAN T. Vertical micro-zonation of testate amoebae and ciliates in peatland waters in relation to potential food resources and grazing pressure. Int. Rev. Hydrobiol. 95, 86, 2010.
  • 23. CHERNOVSKY A.A. Identification of larvae of the midge family Tendipedidae. Izv. Akad. Nauk, SSSR 31, 1949 [In Russian].
  • 24. WIEDERHOLM T. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica. Supplement 19. Borgstroms Tryckeri AB, Motala, 1983.
  • 25. HERMANOWICZ W., DOJLIDO J., DOŻAŃSKA W., KOSIOROWSKI B., ZERBE J. Physical and chemical investigation methods of water and sewage. Arkady Press, Warsaw, 1999 [In Polish].
  • 26. GOLTERMAN H.L. Methods for chemical analysis of freshwaters. IBP Handbook No. 8. Blackwell Scientific Publications, Oxford, Edinburgh, 1969.
  • 27. TER BRAAK CJF, ŠMILAUER P. CANOCO Reference Manual and User`s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York, USA, 2002.
  • 28. LEPŠ J., ŠMILAUER P. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge, 2003.
  • 29. TARKOWSKA-KUKURYK M. Epiphytic chironomids on rigid hornwort (Ceratophyllum demersum L.) – the relation between the community structure and lake status. Oceanol. Hydrobiol. St. 39, 117, 2010.
  • 30. CERBA D., MIHALJEVIC Z., VIDAKOVIC J. Colonisation of temporary macrophyte substratum by midges (Chironomidae: Diptera). Ann. Limnol.-Int. J. Lim. 46, 181, 2010.
  • 31. TARKOWSKA-KUKURYK M. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect of macrophyte species and food resources. Limnology, doi: 10.1007/s10201-014-0425-4, 2014.
  • 32. TARKOWSKA-KUKURYK M., MIECZAN T. Effect of substrate on periphyton communities and relationships between food web components in shallow hypertrophic lake. J. Limnol. 71, 279, 2012.
  • 33. TOTH M., ARVA D., SANDOR A.N., SPECZIAR A. Species diversity and abundance of plant-dwelling chironomids across hierarchical habitat and seasonal scales in the oxbow lakes of River Tisza, Hungary. Fundam. Appl. Limnol. 182, 309, 2013.
  • 34. NASER M.N., ROY D. Feeding ecology of Chironomus larvae (Insecta: Diptera) collected from different habitat of Dhaka, Bangladesh. Bangladesh J. Zool. 40, 129, 2012.
  • 35. ÖZKAN K., JEPPESEN E., JOHANSSON L.S., BEKLIOGLU M. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biol. 55, 463, 2010.
  • 36. WERSAL R.M., MADSEN J.D. Influences of water column nutrient loading on growth characteristics of the invasive aquatic macrophyte Myriophyllum aquaticum (Vell.) Verdc. Hydrobiologia 665, 93, 2011.
  • 37. FRANCEZ A.J., PINAY G., JOSSELIN N., WILLIAMS B.L. Denitrification triggered by nitrogen addition in Sphagnum magellanicum peat. Biogeochemistry 106, 435, 2011.
  • 38. LAFLUER B., PARE D., FENTON N.J., BERGERON Y. Growth and nutrition of black spruce seedlings in response to disruption of Pleurozium and Sphagnum moss carpets in boreal forested peatlands. Plant Soil 345, 141, 2011.
  • 39. LIMPENS J., BERENDSE F., KLEES H. N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol. 157, 339, 2003.
  • 40. VAN DUINEN G.A., VERMONDEN K., BROCK A.M.T., LEUVEN R.S.E.W., SMOLDERS A.J.P., VAN DER VELDE G., VERBERK W.C.E.P., ESSELINK H. Basal food sources for the invertebrate food web in nutrient poor and nutrient enriched raised bog pools. Proc. Neth. Entomol. Soc. Meet. 17, 37, 2006.
  • 41. TARKOWSKA-KUKURYK M. Periphytic algae as food source for grazing chironomids in a shallow phytoplankton dominated lake. Limnologica 43, 254, 2013.
  • 42. TRONSTAD L.M., TRONSTAD B.P., BENKE A.C. Growth rates of chironomids collected from an ephemeral floodplain wetland. Wetlands 30, 827, 2010.
  • 43. HOEKMAN D. Turning up the heat: Temperature influences the relative importance of top-down and bottom-up effects. Ecology 91, 2819, 2010.
  • 44. PAERL H.W., XU H., MCCARTHY M.J., ZHU G., QIN B., LI Y., GARDNER W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 45, 1973, 2011.
  • 45. LAINE A.M., JUUROLA E., HAJEK T., TUITTILA E.S. Sphagnum growth and ecophysiology during mire succession. Oecologia 167, 1115, 2011.
  • 46. ROBROEK B.J.M., LIMPENS C.J., BREEUWER C.A., MATTHIJS C., SCHOUTEN G.C. Effects of water level and temperature on performance of four Sphagnum mosses. Plant Ecol. 190, 97, 2007.
  • 47. ZINCHENKO T.D., GOLOVATYUK L.V. Salinity Tolerance of Macroinvertebrates in Stream Waters (Review). Arid Ecosystems 3, 113, 2013.
  • 48. CARTIER V., CLARET C., GARNIER R., FRANQUET E. How salinity affects life cycle of a brackish water species, Chironomus salinarius KIEFFER (Diptera: Chironomidae). J. Exp. Mar. Biol. Ecol. 405, 93, 2011

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3c40b0bd-134d-403d-8fe4-935324319298
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.