PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 1 |

Tytuł artykułu

Genes and physical fitness

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The search for genes with that positively affect physical fitness is a difficult process. Physical fitness is determined by numerous genes, and its genetic determinants are modified by environmental factors. The map of candidate genes that can potentially affect physical fitness becomes larger every year, and currently it contains more than 200 genes associated with such aspects as respiratory and cardiovascular stability; body build and composition – especially muscle mass and strength; carbohydrate and lipid metabolism; response to training; and exercise intolerance. The inclusion of the genetic component in physiological and biochemical studies would permit drawing a representation of predispositions for each athlete interested in practicing high performance sports and would be a valuable coaching aid in the process of training individualization.

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.16-29,ref.

Twórcy

autor
  • Department of Physiology, University School of Physical Education, Poznan, Poland
autor
  • Department of Physiology, University School of Physical Education, Poznan, Poland

Bibliografia

  • 1. Wilmore JH and Costill DL. Physiology of Sport and Exercise: 3rd Edition. Champaign, IL: Human Kinetics. 2005.
  • 2. Wassermann K, Hansen JE, Sue DY, et al. Principles of exercise testing and interpretation including patho¬physiology and clinical applications, 2005, 4th edition. Lippincott Williams & Wilkins.
  • 3. Blomstrand E, Rädegran G, Saltin B. Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle. J Physiol. 1997; 501: 455-460.
  • 4. Plomin R, Owen MJ, McGuffin P. The genetic basis of complex human behaviors. Science. 1994; 264: 1733¬1739.
  • 5. Beunen G, Thomas M. Gene powered? Where to go from heritability (h2) in muscle strength and power? Exerc Sport Sci Rev. 2004; 32(4): 148-154.
  • 6. Rupert JL. The search for genotypes that underline hu¬man performance phenotypes. Comp Biochem Physiol Part A 2003; 136: 191-203.
  • 7. Klissouras V. Heritability of adaptive variation. J Appl Physiol. 1971; 31: 338-344.
  • 8. Fagard R, Bielen E, Amery A. Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol. 1991; 70(1): 357-362.
  • 9. Bouchard C, An P, Rice T, et al. Familial aggregation of VO2max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999; 87(3): 1003-1008.
  • 10. Howald H. Ultrastructure and biochemical function of skeletal muscle in twins. Ann Hum Biol. 1976; 3(5): 455-462.
  • 11. Lesage R, Simoneau JA, Jobin J, et al. Familial resem¬blance in maximal heart rate, blood lactate and aerobic power. Hum Hered. 1985; 35(3): 182-189.
  • 12. Bouchard C, Leon AS, Rao DC, et al. The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc. 1995; 27(5): 721-729.
  • 13. Issurin V, Lustig G, Szopa J. Determinant of heredity related trainability. J Hum Kinetics. 2004; 11: 35-46.
  • 14. Bullock J, Boyle J, Wang MB. Physiology. Wydanie I polskie pod red. Tuganowski W; Urban & Partner, Wy¬dawnictwo Medyczne Wrocław. 1997.
  • 15. Riordan JF. Angiotensin-I-converting enzyme and its relatives. Genome Biol. 2003; 4(8): 225.
  • 16. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/ deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Ciln Invest. 1990; 86: 1343-1346.
  • 17. Thompson WR, Binder-Macleod SA. Association of genetic factors with selected measures of physical per¬formance. Phys Ther. 2006; 86(4): 585-591.
  • 18. Cambien F, Poirier O, Lecerf L. Deletion polymorphism in the gene for angiotensin-converting enzyme is a po¬tent risk factor for myocardial infarction. Nature. 1992; 359(6396): 641-644.
  • 19. Gayagay G, Yu B, Hambly B, et al. Elite endurance ath¬letes and the ACE I allele: the role of genes in athletic performance. Hum Genet. 1998; 103: 48-50.
  • 20. Williams AG, Rayson MP, Jubb M, et al. The ACE gene and muscle performance. Nature. 2000; 403: 614.
  • 21. Montgomery HE, Marshall R, Hemingway H, et al. Hu¬man gene for physical performance. Nature. 1998; 393: 221-222.
  • 22. Jones A, Montgomery HE, Woods DR. Human perfor¬mance: a role for the ACE genotype? Exerc Sport Sci Rev. 2002; 30(4): 184-190.
  • 23. Woods DR, World M, Rayson MP, et al. Endurance en¬hancement related to the human angiotensin I-converting enzyme I-D polymorphism is not due to differences in the cardiorespiratory response to training. Eur J Appl Physiol. 2002; 86(3): 240-244.
  • 24. Zhang B, Tanaka H, Shono N, et al. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet. 2003; 63(2): 139¬144.
  • 25. Cerit M, Colakoglu M, Erdogan M, et al. Relationship be¬tween ace genotype and short duration aerobic performance development. Eur J Appl Physiol. 2006; 98(5): 461-465.
  • 26. Holdys J, Kryściak J, Stanisławski D, et al. ACE I/D polymorphism in athletes of various sports disciplines. Hum Mov. 2011b; 12(3): 223-231.
  • 27. Lehmann J, Bręczewski G, Pospieszna B, et al. No asso¬ciation if insertion/deletion polymorphism in angiotensin convertase gene with physical performance but influence on personality traits. J Physiol Pharmacol. 2006a; suppl 2, 57: 185.
  • 28. Rankinen T, Wolfarth B, Simoneau JA, et al. No asso¬ciation between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol. 2000; 88(5): 1571-1575.
  • 29. Sonna LA, Sharp MA, Knapik JJ, et al. Angiotensin- converting enzyme genotype and physical performance during US Army basic training. J Appl Physiol. 2001; 91(3): 1355-1363.
  • 30. Thomis MA, Huygens W, Heuninckx S, et al. Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training. Eur J Appl Physiol. 2004; 92(3): 267-274.
  • 31. Scott RA, Moran C, Wilson RH, et al. No association between angiotensin converting enzyme (ACE) gene variation and endurance athlete status in Kenyans. Comp Biochem Physiol A Mol Integr Physiol. 2005; 141(2): 169-175.
  • 32. Zhao B, Moochhala SM, Tham S, et al. Relationship be¬tween angiotensin-converting enzyme ID polymorphism and VO2max of Chinese males. Life Sci. 2003; 73(20): 2625-26230.
  • 33. Mills MA, Yang N, Weinberger RP, et al. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet. 2001; 10: 1335-1346.
  • 34. Beggs AH, Byers TJ, Knoll JHM, et al. Cloning and characterization of two human skeletal muscle alpha- actinin genes located on chromosomes 1 and 11. J Biol Chem. 1992; 267: 9281-9288.
  • 35. MacArthur DG, North KN. A gene for speed? The evo¬lution and function of alpha-actinin-3. Bioessays. 2004; 26(7): 786-795.
  • 36. North KN, Yang N, Wattanasirichaigoon D, et al. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet. 1999; 21(4): 353-354.
  • 37. Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 Geno¬type Is Associated with Human Elite Athletic Perfor¬mance. Am J Hum Genet. 2003; 73(3 ): 627-631.
  • 38. MacArthur DG, Seto JT, Raftery JM, et al. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet. 2007; 39(10): 1261-1265.
  • 39. Garland T Jr, Bennett AF, Daniels CB. Heritability of locomotor performance and its correlates in a natural population. Experimentia. 1990; 46: 530-533.
  • 40. Van Damme R, Wilson RS, Vanhooydonck B, Aerts P. Performance constraints in decathletes. Nature. 2002; 415: 755-756.
  • 41. Niemi A-K, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Europ J Hum Genet. 2005; 13: 965-969.
  • 42. Zanotelli E, Lotuffo RM, Oliveira AS, et al. Deficiency of muscle alpha-actinin-3 is compatible with high muscle performance. J Mol Neurosci. 2003; 20(1): 39-42.
  • 43. Vincent B, De Bock K, Ramaekers M, et al. ACTN3 (R577X) genotype is associated with fiber type distribu¬tion. Physiol Genomics. 2007; 32: 58-63.
  • 44. Clarkson PM, Devaney JM, Gordish-Dressman H, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol. 2005; 99(1): 154-163.
  • 45. Moran CN, Yang N, Bailey MES, et al. Association analysis of the ACTN3 R577X polymorphism and com¬plex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet. 2007; 15: 88-93.
  • 46. Papadimitriou ID, Papadopoulos C, Kouvatsi A, et al. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med. 2008; 29(4): 352-355.
  • 47. Druzhevskaya AM, Ahmetov II, Astratenkova IV, et al. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur J Appl Physiol. 2008; 103(6): 631-614.
  • 48. Holdys J, Kryściak J, Stanisławski D, et al. Polymor¬phism of the alpha-actinin-3 gene in individuals practis¬ing different sports disciplines. Biol Sport. 2011a; 28(2): 101-106.
  • 49. North K. Why is alpha-actinin-3 deficiency so common in the general population? The evolution of athletic per¬formance. Twin Res Hum Genet. 2008; 11(4): 384-394.
  • 50. Suminaga R, Matsuo M, Takeshima Y, et al. Nonsense mutation of the alpha-actinin-3 gene is not associated with dystrophinopathy. Am J Med Genet. 2000; 92: 77-78.
  • 51. Fontanet HL, Trask RV, Haas RC, et al. Regulation of expression of M, B, and mitochondrial creatine kinase mRNAs in the left ventricle after pressure overload in rats. Circ Res. 1991; 68(4): 1007-1012.
  • 52. Wallimann T, Wyss M, Brdiczka D, et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cel¬lular energy homeostasis. Biochem J. 1992; 281: 21-40.
  • 53. Echegaray M, Rivera MA. Role of creatine kinase iso¬enzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence. Sports Med. 2001; 13: 919-934.
  • 54. Rivera MA, Dionne FT, Simoneau JA, et al. Muscle-spe¬cific creatine kinase gene polymorphism and VO2max in the HERITAGE Family Study. Med Sci Sports Exerc. 1997a; 29 (10): 1311-1317.
  • 55. Rivera MA, Dionne FT, Wolfarth B, et al. Muscle-spe¬cific creatine kinase gene polymorphism in elite endur¬ance athletes and sedentary controls. Med Sci Sports Exerc. 1997b; 29(11): 1444-1447.
  • 56. Rivera MA, Perusse L, Simoneau JA, et al. Linkage between a muscle-specific CK gene marker and VO2max in the HERITAGE Family Study. Med Sci Sports Exerc. 1999; 5: 698-701.
  • 57. Zhou DQ, Hu Y, Liu G, et al. Muscle-specific creatine kinase gene polymorphism and running economy re¬sponses to an 18-week 5000-m training programme. Br J Sports Med. 2006; 40(12): 988-991.
  • 58. Wallace DC. The mitochondrial genome in human adap¬tive radiation and disease: on the road to therapeutics and performance enhancement. Gene. 2005; 354: 169-180.
  • 59. Dionne FT, Turcotte L, Thibault MC, et al. Mitochondrial DNA sequence polymorphism, VO2max, and response to endurance training. Med Sci Sports Exerc. 1991; 23: 177-185.
  • 60. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981; 290: 457-465.
  • 61. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981; 290: 470-474.
  • 62. Attardi G, Chomyn A, Montoya J, et al. Identification and mapping of human mitochondrial genes. Cytogenet Cell Genet. 1982; 32: 85-98.
  • 63. Ragan CI. Structure of NADH-ubiquinone reductase (complex I). Curr Top Bioenerg. 1987; 15: 1.
  • 64. Brearley MB, Zhou S. Mitochondrial DNA and maxi¬mum oxygen consumption. Sport Sci. 2001; 5(2).
  • 65. Chen Q, Ma LH, Chen JQ. Analysis on genetic polymor¬phism of mtDNA in endurance athletes and sedentary subjects. Chin J Appl Physiol. 2000; 16: 327-330.
  • 66. Ma LH, Chen Q, Zhang W, et al. The mitochondrial DNA D-Loop polymorphism and VO2max in Chinese junior athletes. Chin J Sport Med. 2000; 19: 349-350.
  • 67. Hameed M, Harridge SD, Goldspink G. Sarcopenia and hypertrophy: a role for insulin-like growth factor-1 in aged muscle? Exerc Sport Sci Rev. 2002; 30(1): 15-19.
  • 68. Jernström H, Deal C, Wilkin F, et al. Genetic and non- genetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiol Biomarkers Prev. 2001; 10(4): 377-384.
  • 69. Platz EA, Pollak MN, Rimm EB, et al. Racial variation in insulin-like growth factor-1 and binding protein-3 concentrations in middle-aged men. Cancer Epidemiol Biomarkers Prev. 1999; 8(12): 1107-1110.
  • 70. Rosen CJ, Kurland ES, Vereault D, et al. Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: implications for genetic studies of bone mineral density. J Clin Endocrinol Metab. 1998; 83: 2286-2290.
  • 71. Cheng I, DeLellis Henderson K, Haiman CA, et al. Genetic determinants of circulating insulin-like growth factor (IGF)-I, IGF binding protein (BP)-1, and IGFBP- 3 levels in a multiethnic population. J Clin Endocrinol Metab. 2005; 92(9): 3660-3666.
  • 72. Harrela M, Koistinen H, Kaprio J, et al. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest. 1996; 98(11): 2612-2615.
  • 73. Hong Y, Pedersen NL, Brismar K, et al. Quantitative genetic analyses of insulin-like growth factor I (IGF-I), IGF-binding protein-1, and insulin levels in middle-aged and elderly twins. J Clin Endocrinol Metab. 1996; 81(5): 1791-1797.
  • 74. Devaney JM, Hoffman EP, Gordish-Dressman H, et al. IGF-II gene region polymorphisms related to exertional muscle damage. J Appl Physiol. 2007; 102(5): 1815¬1823.
  • 75. Kostek MC, Delmonico MJ, Reichel JB, et al. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol. 2005; 98(6): 2147-2154.
  • 76. Eliakim A, Brasel JA, Mohan S, et al. Physical fitness, endurance training, and the growth hormone-insulin¬like growth factor I system in adolescent females. J Clin Endocrinol Metab. 1996; 81(11): 3986-3992.
  • 77. Poehlman ET, Copeland KC. Influence of physical ac¬tivity on insulin-like growth factor-I in healthy younger and older men. J Clin Endocrinol Metab. 1990; 71(6): 1468-1473.
  • 78. Ambrosio MR, Valentini A, Trasforini G, et al. Func¬tion of the GH/IGF-1 axis in healthy middle-aged male runners. Neuroendocrinol. 1996; 63(6): 498-503.
  • 79. J0rgensen JO, Vahl N, Hansen TB, et al. Determinants of serum insulin-like growth factor I in growth hormone deficient adults as compared to healthy subjects. Clin Endocrinol (Oxf). 1998; 48(4): 479-486.
  • 80. Smith AT, Clemmons DR, Underwood LE, et al. The effect of exercise on plasma somatomedin-C/insulinlike growth factor I concentrations. Metabolism. 1987; 36(6): 533-537.
  • 81. Vitiello MV, Wilkinson CW, Merriam GR, et al. Success¬ful 6-month endurance training does not alter insulin¬like growth factor-I in healthy older men and women. J Gereontol A Biol Med Sci. 1997; 52(3):M1 49-54.
  • 82. Pyka G, Taaffe DR, Marcus R. Effect of a sustained program of resistance training on the acute growth hormone response to resistance exercise in older adults. Horm Metab Res. 1994; 26(7): 330-333.
  • 83. Poehlman ET, Rosen CJ, Copeland KC. The influence of endurance training on insulin-like growth factor-1 in older individuals. Metabolism. 1994; 43(11): 1401¬1405.
  • 84. Roelen CA, de Vries WR, Koppeschaar HP, et al. Plasma insulin-like growth factor-I and high affinity growth hormone-binding protein levels increase after two weeks of strenuous physical training. Int J Sports Med. 1997; 18(4): 238-241.
  • 85. Vaessen N, Heutink P, Janssen JA, et al. A polymorphism in the gene for IGF-I: functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes. 2001; 50(3): 637-642.
  • 86. Arends N, Johnston L, Hokken-Koelega A, et al. Poly¬morphism in the IGF-I gene: clinical relevance for short children born small for gestational age (SGA). J Clin Endocrinol Metab. 2002; 87(6): 2720.
  • 87. Ferry RJ Jr, Cerri RW, Cohen P. Insulin-like growth fac¬tor binding proteins: new proteins, new functions. Horm Res. 1999; 51: 53-67.
  • 88. Lofqvist C, Chen J, Connor KM, et al. IGFBP3 sup¬presses retinopathy through suppression of oxygen-in¬duced vessel loss and promotion of vascular regrowth. Proc Nat Acad Sci. 2007; 104: 10589-10594.
  • 89. Cubbage ML, Suwanichkul A, Powell DR. Insulin-like growth factor binding protein-3. Organization of the hu¬man chromosomal gene and demonstration of promoter activity. J Biol Chem. 1990; 265(21): 12642-12649.
  • 90. Deal C, Ma J, Wilkin F, Paquette J, et al. Novel promoter polymorphism in insulin-like growth factor-binding protein-3: correlation with serum levels and interaction with known regulators. J Clin Endocrinol Metab. 2001; 86(3): 1274-1280.
  • 91. Cheng I, DeLellis Henderson K, et al. Genetic determi¬nants of circulating insulin-like growth factor (IGF)-I, IGF binding protein (BP)-1, and IGFBP-3 levels in a multiethnic population. J Clin Endocrinol Metab. 2005; 92(9): 3660-3666.
  • 92. Costalonga EF, Antonini SR, Guerra-Junior G, et al. The -202 A allele of insulin-like growth factor binding protein-3 (IGFBP3) promoter polymorphism is associ¬ated with higher IGFBP-3 serum levels and better growth response to growth hormone treatment in patients with severe growth hormone deficiency. J Clin Endocrinol Metab. 2009; 94(2): 588-595.
  • 93. Perusse L, Rankinen T, Rivera MA, et al.The human gene map for performance and health-related fitness phenotypes: the 2002 update. Med Sci Sports Exerc. 2003; 35(8): 1248-1264.
  • 94. Lortie G, Bouchard C, Leblanc C, et al. Familial similar¬ity in aerobic power. Hum Biol. 1982; 54(4): 801-812.
  • 95. Gaskill SE, Walker AJ, Serfass RA, et al. Changes in ventilatory threshold with exercise training in a sedentary population: the HERITAGE Family Study. Int J Sports Med. 2001; 22(8): 586-592.
  • 96. Klissouras V. Heritability of adaptive variation: an old problem revisited. J Sports Med Phys Fitness. 1997; 37(1): 1-6.
  • 97. Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE fam¬ily study. Med Sci Sports Exerc. 1998; 30(2): 252-258.
  • 98. Calvo M, Rodas G, Vallejo M, et al. Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol. 2002; 86(3): 218-225.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3b750ceb-df84-4ff6-b0c4-7fc873a4b68b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.