PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Dead cells of Chlorella vulgaris were used experimentally to remove cadmium (Cd2+), copper (Cu2+) and lead (Pb2+) ions from aqueous solution under various conditions of pH, biosorbent dosage and contact time. C. vulgaris was isolated from Lake Manzala, (Egypt) and then cultivated outdoors, in growth media, maintaining pH of nearly 7.5. After cultivation, the cells were harvested by coagulation and prepared to make an experiment with different variants of pH, contact time and adsorbent dose. The adsorption specific characteristics of C. vulgaris were examined using Fourier Transformation Infrared Spectroscopy (FTR) and Scanning Electron Microscopy (SEM). The FTIR and SEM data showed vibration frequency changes for the peaks corresponding to the surface functional groups and morphological changes of C. vulgaris, respectively, after its exposure to metal ion solution. The maximum removal efficiency for copper and lead at ambient room temperature was recorded at pH 5 and 20-minute contact time, while the contact time of 120 minutes at pH 6 created the most suitable conditions for cadmium biosorption. On the other hand, 2 g dm-3 of C. vulgaris under optimum conditions was sufficient to remove 95.5%, 97.7% and 99.4% of Cd2+, Cu2+ and Pb2+, respectively, from a mixed solution of 50 mg dm-3 of each metal ion. The removal trend was in order of Pb2+ > Cu2+ > Cd2+. The results suggested that the biomass of C. vulgaris is an extremely efficient and environmentally friendly biosorbent for the removal of Cd2+, Cu2+ and Pb2 from aqueous solutions, which may be applied on a large, industrial scale.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

3

Opis fizyczny

p.703-714,fig.,ref.

Twórcy

autor
  • Fresh Water and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), 101 El Kasr Aini St., Cairo, Egypt
  • Fresh Water and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
  • Fresh Water and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
  • Chemistry Department, Hail University, Kingdom of Saudi Arabia
autor
  • Fresh Water and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
  • Fresh Water and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
  • Department of Hydrobiology, Inland Fisheries Institute, Olsztyn, Poland

Bibliografia

  • Abbas H., Sulaymon A.H., Ahmed A., Mohammed A.A., Tariq J., Al-Musawi T.J. 2014. Biosorption of cadmium ions onto garden grass. J. Engin., 04(01): 16-25.
  • Abdus-Salam N., Adekola F.A. 2005. The influence of pH and adsorbent concentration on adsorption of lead and zinc on a natural goethite. Afr. J. Sci. Technol., 6: 55-66.
  • Ahluwalia S.S., Goyal D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores. Technol., 98: 2243-2257.
  • Aksu Z. 2001. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Separ. Purif. Tech., 21: 285-94.
  • Ali M.H.H. 2008. Assessment of some water quality characteristics and determination of some heavy metals in Lake Manzala, Egipt. Egypt. J. Aquat. Biol. Fish., 12(2): 133-154.
  • Deepa C.N., Suresha S. 2014. Biosorption of lead (II) from aqueous solution and industrial effluent by using leaves of Araucaria cookii: Application of response surface methodology. J. Environ. Sci., Toxicol. Food Technol. (IOSR-JESTFT), 8(7): 67-79.
  • Duda-Chodak A., Tarko T., Milotta K. 2012. Applicability of different kinds of yeast biomass to lead removal from water. J. Elem., 17(1): 7-18. DOI: 10.5601/jelem.2012.17.1.01
  • Durrieu C., Guedri H., Fremion F., Volatier L. 2011. Unicellular algae used as biosensors for chemical detection in the Mediterranean lagoon and coastal waters. Res. Microbiol., 162: 908-914.
  • Edris G., Alhamed Y., Alzahrani A. 2012. Cadmium and lead biosorption by Chlorella vulgaris. Water Technol. Conf., IWTC 16 2012, Istanbul, Turkey, 1-12.
  • Farooq U., Kozinski J., Ain Khan M., Athar M. 2010. Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature. Biores. Technol., 101: 5043-5053.
  • Fraile A., Penche S., González F., Blázquez M.L., Muñoz J., Ball ester A. 2005. Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chem. Ecol., 21(1): 61-75. DOI: 10.1080/02757540512331334933
  • Gautam R.K., Soni S., Chattopadhayaya M. C., 2015. Functionalized magnatic nanoparticles for enviromental remediation, In: Handbook of research on diverse applications of nanotechnology in biomedicine, chemistry, and engineering. Soni S., Salhotra A., Suar M. (Eds). USA, IGI Global, 518-550.
  • Ghoniem M.M., El-Desoky H.S., El-Moselhy K.M., Amer A., Abo-El-Naga E.H., Mohamedein L.I. and Al-Prol A.E. 2014. Removal of cadmium from aqueous solution using green marine algae, Ulva lactuca. Egypt. J. Aquat. Res., 40(3): 235-242.
  • Goher M.E., Hass an A.M.A., Abd el-Moniem I.A.I., Fahmy A.H.A., Abd o, M.H., El-sayed S.M.M. 2015. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H, Egypt. Egypt. J. Aquat. Res., 41(2): 155-146.
  • Ho Y.S. 2005. Effect of pH on lead removal from water using tree fern as the sorbent. Biores. Technol., 96: 1292-1296.
  • Kuhl A., Lorenzen H. 1964. Handling and culturing of Chlorella In: Methods of cell physiology. Preston D.M. (ed.). Academic Press, London, 1: 159-187.
  • Li C. 2008. Batch and bench-scale fixed-bed column evaluations of heavy metal removals from aqueous solutions and synthetic landfill leachate using low-cost natural adsorbents (M.Sc. thesis in Engineering). Queen’s University Kingston, Ontario, Canada, 1-332.
  • Li C., Champagne P. 2009. Fixed-bed column study for the removal of cadmium (II) and nickel(II) ions from aqueous solutions using peat and mollusk shells. J. Hazard. Mater., 171(1-3):872-878. DOI: 10.1016/j.jhazmat.2009.06.084
  • Mann S., Mandal A. 2014. Removal of fluoride from drinking water using sawdust. Int. J. Engin. Res. Appl., 4(7): 116-123.
  • Metcalf & Edd y 2003. Wastewater engineering: Treatment and reuse. In: The McGraw Hill series in civil and environmental engineering (4th edition), McGraw-Hill, New York, pp. 1149 and 1819.
  • Mousavi H.Z., Hoss eynifar A., Jahed V., Dehghani S.A.M. 2010. Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent. Braz. J. Chem. Eng., 27(1): 79-87.
  • Murphy V., Hughes H., McLoughlin P. 2007. Cu(II) binding by dried biomass of red, green and brown macroalgae. Water Res., 41: 731-740.
  • Norton K., Baskaran T., McKenzie T. 2004. Biosorption of zinc from aqueous solutions using biosolids. Adv. Environ. Res., 8(3-4): 629– 635.
  • Onyeji L.I., Aboje A.A. 2011. Removal of heavy metals from dye effluent using activated carbon produced from coconut shell. Int. J. Engin. Sci. Technol. (IJEST), 3(12): 8238-8246.
  • Raize O., Argaman Y., Yannai S. 2004. Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol. Bioeng., 87: 451-458.
  • Saravanan A., Brindha V., Krishnan S. 2011. Studies on the structural changes of the biomass Sargassum sp. on metal adsorption. J. Adv. Bioinf., 2: 193-196.
  • Sen B., Alp M.T., Kocer M.A.T. 2005. Studies on growth of marine microalgae in batch cultures. I. Chlorella vulgaris (Chlorophyta). Asian J. Plant Sci., 4(6): 636-638.
  • Shaheen S.M., Derbalah A.S., Moghanm F.S. 2012. Removal of heavy metals from aqueous solution by zeolite in competitive sorption system. Int. J. Environ. Sci. Develop., 3(4): 362-367.
  • Singh R, Gautam N, Mishra A, Gupta R. 2011. Heavy metals and living systems: An overview. Ind. J. Pharmacol., 43(3): 246-253. DOI:10.4103/0253-7613.81505
  • Wai Lynn Aung W.L., Kyaw Nyein Aye K. N., Nway Nay Hlaing N.N. 2012. Biosorption of Lead (Pb2+) by using Chlorella vulgaris. Int. Conf. on Chemical engineering and its applications (ICCEA), September 8-9, Bangkok (Thailand).
  • Wińska-Krysiak M., Koropacka K., Gawroński S. 2015. Determination of the tolerance of sunflower to lead-induced stress. J. Elem., 20(2): 491-502. DOI: 10.5601/jelem.2014.19.4.721

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-396dae82-0b6c-4ad8-aa7b-b0e932a460c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.