PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 |

Tytuł artykułu

Storage compounds, ABA and fumarase in Fagus sylvatica embryos during stratification

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Understanding the mechanisms of seed dormancy is essential for planning optimal seed storage and for breaking the dormancy of stored seeds. Our experiments focused on three aspects of characterization of breaking the dormancy of Fagus sylvatica seeds during moist low temperature stratification. 1) We used the changes of ABA content in embryos during the whole process of stratification as the marker of the depth of dormancy: the decrease in the depth of dormancy (according standard germination tests) was directly proportional to the drop in endogenous ABA content in both cotyledons and embryonic axes. 2) Fumarase activity (the second marker of dormancy) increased gradually during stratification. 3) The histochemical visualisation of storage compounds as the third marker of dormancy documented the changes in storage protein deposition during stratification. The proteinaceous content of storage vacuoles disappeared; the vacuoles diminished, petered out or fused, creating central vacuoles. This process commenced with imbibition of the seeds and it was more pronounced in the cells in the external parts of the cotyledons. No changes in the size and location of starch grains or calcium oxalate crystals linked with stratification were detected.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Opis fizyczny

p.25-33,fig.,ref.

Twórcy

autor
  • Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, Prague 6, 16502, Czech Republic
autor
  • Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, Prague 6, 16502, Czech Republic
  • Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, Prague 6, 16502, Czech Republic

Bibliografia

  • Bewley J.D., Bradford K., Hilhorst H., Nonogaki H. 2013. Seeds: Physiology of Development, Germination and Dormancy, 3rd edn. Springer, New York.
  • Bezděčková L., Procházková Z., Matějka K. 2014. Practical implications of inconsistent germination and viability results in testing stored Fagus sylvatica seeds. Dendrobiology 71: 35–47.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72: 248–254.
  • Buttrose M.S., Lott J.N.A. 1978. Calcium oxalate druse crystals and other inclusions in seed protein bodies: Eucalyptus and jojoba. Canadien Journal of Botany 56: 2083–2091.
  • Calvo A.P., Nicolás C., Lorenzo O., Nicolás G., Rodríguez D. 2004. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. Journal of Plant Growth Regulation 23: 44–53.
  • Collada C., Allona I., Aragoncillo P., Aragoncillo C. 1993. Development of protein bodies in cotyledons of Fagus sylvatica. Physiologia Plantarum 89: 354–359.
  • Fernández H., Doumas P., Bonnet-Masimbert M. 1997. Quantification of GA1, GA3, GA4, GA7, GA8, GA9, GA19 and GA20; and GA20 metabolism in dormant and non-dormant beechnuts. Plant Growth Regulation 22: 29–35.
  • Franceschi V.R., Nakata P.A. 2005. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56: 41–71.
  • Gendreau E., Corbineau F. 2009. Physiological aspects of seed dormancy in woody ornamental plants. Propagation of Ornamental Plants 9: 151–159.
  • Graeber K., Nakabayashi K., Miatton E., Leubner-Metzger G., Soppe W.J.J. 2012. Molecular mechanisms of seed dormancy. Plant Cell Environment 35: 1769–1786.
  • Gutmann M., Von Aderkas P., Label P., Lelu M.A. 1996. Effects of abscisic acid on somatic embryo maturation of hybrid larch. Journal of Experimental Botany 47: 1905–1917.
  • Hatch M.D. 1978. A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts. Analytical Biochemistry 85: 271–275.
  • Ibl V., Stoger E. 2012. The formation, function and fate of protein storage compartments in seeds. Protoplasma 249: 379–392.
  • Kermode A.R. 2005. Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation 24: 319–344.
  • Kucera B., Cohn M.A., Leubner-Metzger G. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15: 281–307.
  • Kolářová P., Bezděčková L., Procházková Z. 2010. Effect of gibberellic acid and ethephon on the germination of European beech dormant and chilled beechnuts. Journal of Forest Science 56: 389–396.
  • Le Page-Degivry M.T., Garello G., Barthe P. 1997. Changes in abscisic acid biosynthesis and catabolism during dormancy breaking in Fagus sylvatica embryo. Journal of Plant Growth Regulation 16: 57–61.
  • Matilla A.J., Matilla-Vázquez M.A. 2008. Involvement of ethylene in seed physiology. Plant Science 175: 87–97.
  • Nicolás C., Nicolás G., Rodríguez D. 1996. Antagonistic effects of abscisic acid and gibberellic acid on the breaking of dormancy of Fagus sylvatica seeds. Physiologia Plantarum 96: 244–250.
  • Pawłowski T.A. 2007. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7: 2246–2257.
  • Pawłowski T.A. 2010. Proteomic approach to analyze dormancy breaking of tree seeds. Plant Molecular Biology 73: 15–25.
  • Pukacka S., Ratajczak E. 2014. Factors influencing the storability of Fagus sylvatica L. seeds after release from dormancy. Plant Growth Regulation 72: 17–27.
  • Rodríguez-Gacio M. del C., Matilla-Vázquez M.A., Matilla A.J. 2009. Seed dormancy and ABA signaling: The breakthrough goes on. Plant Signaling and Behavior 4: 1035–1048.
  • Rosental L., Nonogaki H., Fait A. 2014. Activation and regulation of primary metabolism during seed germination. Seed Science Research 24: 1–15.
  • Sass J.E. 1958. Botanical Microtechnique. 3rd edn. The Iowa State University Press, Ames.
  • Shen T.Y., Odén P.C. 1999. Activity of sucrose synthase, soluble acid invertase and fumarase in germinating seeds of Scots pine (Pinus sylvestris L.) of different quality. Seed Science and Technology 27: 825–838.
  • Shen T.Y., Odén P.C. 2000. Fumarase activity as a quick vigour test for Scots pine (Pinus sylvestris L.) seeds. Seed Science and Technology 28: 825–835.
  • Shen T.Y., Odén P.C. 2002. Relationship between seed vigour and fumarase activity in Picea abies, Pinus contorta, Betula pendula and Fagus sylvatica. Seed Science and Technology 30: 177–186.
  • Schaffner W., Weissmann C. 1973. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Analytical Biochemistry 56: 502–514.
  • Svobodová H., Albrechtová J., Kumstýřová L., Lipavská H., Vágner M., Vondráková Z. 1999. Somatic embryogenesis in Norway spruce: Anatomical study of embryo development and influence of polyethylene glycol on maturation process. Plant Physiology and Biochemistry 37: 209–221.
  • Szczotka Z., Pawłowski T., Krawiarz K. 2003. Proteins and polyamines during dormancy breaking of European beech (Fagus sylvatica L.) seeds. Acta Physiologiae Plantarum 25: 423–435.
  • Webb M.A. 1999. Cell-mediated crystallization of calcium oxalate in plants. The Plant Cell 11: 751–761.
  • Yasue T. 1969. Histochemical identification of calcium oxalate. Acta Histochemica et Cytochemica 2: 83–95.
  • Žďárská M., Zatloukalová P., Benítez M., Šedo O., Potěšil D., Novák O., Svačinová J., Pešek B., Malbeck J., Vašíčková J., Zdráhal Z., Hejátko J. 2013. Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiology 161: 918–930.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-391cf757-9325-40fa-84d8-ff29e7975942
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.