PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 3 |

Tytuł artykułu

Lyapunov function based criteria for ship rolling in random beam seas

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study is to present a Lyapunov function which can be used to derive an intact stability criterion for a ship in random beam seas. First, the mathematical model of the rolling motion of ships in random beam seas is introduced. The random wave excitation is described by a spectrum which is depended on the wave energy spectrum and the amplitude of the moment of roll. This spectrum is generated by a second order linear filter. Second, the methodology of creating a Lyapunov function is explained briefly. Then, there is outlined the way by which Lyapunov function can be used as the intact stability criterion for a ship. The proposed criterion is derived by considering the weather criteria for German naval vessels. Finally, the coherence of the boundary of safe basin obtained by Lyapunov function with the numerical results obtained by Euler-Maruyama Method is presented. From the results it can be deduced that the Lyapunov function can be used to define an intact stability criterion

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.6-14,fig.,ref.

Twórcy

autor
  • Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Ayazaga Campus, 34469 Istanbul, Turkey

Bibliografia

  • 1. Balcer L.: Location of ship rolling axis, Polish Maritime Research, vol. 11, no. 1, pp. 3–7, 2004.
  • 2. Biran, A. B.: Ship Hydrostatics and stability. Butterworth-Heinemann, Oxford, 2003.
  • 3. Belenky, V. L. and N. B. Sevastianov Stability and Safety of Ships: Risk of Capsizing (2nd ed), SNAME, Jersey City, 2007.
  • 4. Caldeira-Sariava, F.: The boundedness of solutions of a Leinard Equation arising in the theory of ship rolling. IMA J. Appl. Math, 36, pp. 126–139.
  • 5. Chai W., Naess A. and Leira B. J.: Filter models for prediction of stochastic ship roll response, Probab. Eng. Mech., 41, pp. 104–114, 2015.
  • 6. Chai W., Naess A., and Leira B. J.: Stochastic dynamic analysis and reliability of a vessel rolling in random beam seas, J. Ship Res., 59(2), pp. 113–131, 2015.
  • 7. Chai W., Naess A. and Leira B. J.: Stochastic nonlinear ship rolling in random beam seas by the path integration method, Probab. Eng. Mech., 44, pp. 43–52, 2016.
  • 8. Chai W., Naess A. and Leira B. J.: Long-term extreme response and reliability of a vessel rolling in random beam sea, J. Offshore Mech. and Arctic Eng., 140, 11601, pp. 1–9, 2018.
  • 9. Dostal L. and Kreuzer E.: Probabilistic approach to large amplitude ship rolling in random seas, Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 225, pp. 2464–2476, 2011.
  • 10. Dostal L., Kreuzer E. and Namachchivaya: Non-standard stochastic averaging of large-amplitude ship rolling in random seas, Proceedings of the Royal Society A, 258, pp. 1–25, 2012.
  • 11. Haddara M.: Modified approach for the application of Fokker – Plank equation to the nonlinear ship motions in random waves. Int. Shipbuilding Prog., 21(242), pp. 283–288, 1974.
  • 12. Hutchison B. L.: The transverse plane motions of ships, SNAME Marine Tech., vol. 28, No. 2, pp. 55–72, 1991.
  • 13. Jiang C., Troesch A. and Shaw, S.: Capsize criteria for ship models with Memory-Dependent Hydrodynamics and Random Excitation, Philos. Trans. R. Soc. Lond. Ser. A, 358(1771), pp. 1761–1791, 2000.
  • 14. Jiang C.: Highly nonlinear rolling motion leading to capsize, University of Michigan, Ann Arbor, 1995.
  • 15. Karakas S. C., Pesman E. and Ucer E.: Control design of fin roll stabilization in beam seas based on Lyapunov’s direct method, Polish Maritime Research, No 2(73) Vol. 19, pp. 25–30, 2012.
  • 16. Kushner H. J.: Stochastic stability and control, Academic Press, New York, 1967.
  • 17. Kloden PE, Platen E: Numerical solution of stochastic differential equations. New York: Springer; 1995.
  • 18. La Salle, J.P. and Lefschetz, S.: 1961. Stability by Lyapunov’s Direct Method with Applications. Academic Press, New York.
  • 19. Long, Z.Z., Lee, S.K., Kim, J.Y.: Estimation of survival probability for a ship in beam seas using the safe basin, Ocean Eng. Vol: 37, 418–424, 2010.
  • 20. Moshchuk N., Ibrahim R. A. and Khasminskii R.: Response statics of ocean structures to nonlinear hydrodynamics loading Part I: Gaussian ocean waves, Jounal of Sound and Vibration, 184(4), pp. 681–701, 1995.
  • 21. Odabasi, A.Y.: Stochastic stability of ships in following seas, Schiff &Hafen, 3, pp. 223–226, 1979.
  • 22. Ozkan, I.R.: Total (practical) Stability of ships, Ocean Eng., 8, pp. 551–598.
  • 23. Rainey, R.C.T., Thompson, J.M.T.: The transient capsize diagram- a new method of quantifying stability analysis. J. Ship Res. 35 (1), pp. 58–92. 1991.
  • 24. Roberts J.: A Stochastic Theory for Nonlinear Ship Rolling in Irregular Seas, J. Ship Res., 26(4), pp. 229–245, 1982.
  • 25. Schurz H.: Verification of Lyapunov functions for the analysis of stochastic Lienard equations. J Sound Vib., 325: pp. 938–49, 2009.
  • 26. Soliman, M.S., Thompson, J.M.T.: Transient and steady state analysis of capsize phenomena. Appl. Ocean Res. 13 (2), 82–92, 1991.
  • 27. Thompson, J.M.T.: Loss of engineering integrity due to the erosion of absolute and transient basin boundaries, Proceedings of IUTAM Symposium on the Dynamics of Marine Vehicles and Structures in Waves, pp. 313–320, 1989.
  • 28. Ucer E.: Examination of the trawlers in beam seas using safe basins, Ocean Eng., 38(17-18), pp. 1908–1915, 2011.
  • 29. Yilmaz H.: Analyzing form parameters of fishing vessels point of view of practical stability criteria in preliminary design stage, Yildiz Technical University, Istanbul, 1998

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-386453e2-3f06-41f2-aa0d-d31ad2be3bdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.