PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 3 |

Tytuł artykułu

Modulation of physiological and pathological activities of lysozyme by biological membranes

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The molecular details of interactions between lipid membranes and lysozyme (Lz), a small polycationic protein with a wide range of biological activities, have long been the focus of numerous studies. The biological consequences of this process are considered to embrace at least two aspects: i) correlation between antimicrobial and membranotropic properties of this protein, and ii) lipid-mediated Lz amyloidogenesis. The mechanisms underlying the lipid-assisted protein fibrillogenesis and membrane disruption exerted by Lz in bacterial cells are believed to be similar. The present investigation was undertaken to gain further insight into Lz-lipid interactions and explore the routes by which Lz exerts its antimicrobial and amyloidogenic actions. Binding and Förster resonance energy transfer studies revealed that upon increasing the content of anionic lipids in lipid vesicles, Lz forms aggregates in a membrane environment. Total internal reflection fluorescence microscopy and pyrene excimerization reaction were employed to study the effect of Lz on the structural and dynamic properties of lipid bilayers. It was found that Lz induces lipid demixing and reduction of bilayer free volume, the magnitude of this effect being much more pronounced for oligomeric protein.

Wydawca

-

Rocznik

Tom

17

Numer

3

Opis fizyczny

p.349-375,fig.,ref.

Twórcy

autor
  • Department of Biological and Medical Physics, V.N.Karazin Kharkov National University, 4 Svobody Sq., Kharkov 61077, Ukraine

Bibliografia

  • 1. Walsh, M.A., Schneider, T.R., Sieker, L.C., Dauter, Z., Lamzin, V.S. and Wilson, K.S. Refinement of triclinic hen-egg white lysozyme at atomic resolution. Acta Cryst. D54 (1998) 522-546.
  • 2. Wertz, C.F. and Santore, M. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir 18 (2002) 1190-1199.
  • 3. Kimelberg, H.K. Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol. Cell. Biochem. 10 (1976) 171-190.
  • 4. Zschornig, O., Paasche, G., Thieme, C., Korb, N., Fahrwald, A. and Arnold, K. Association of lysozyme with phospholipid vesicles is accompanied by membrane surface dehydration. Gen. Physiol. Biophys. 19 (2000) 85-101.
  • 5. Zschornig, O., Paasche, G., Thieme, C., Korb, N. and Arnold, K. Modulation of lysozyme charge influences interaction with phospholipid vesicles. Colloids Surf. B Biointerfaces 42 (2005) 69-78.
  • 6. de Arcuri, B.F., Vechetti, G.F., Chehin, R.N., Goni, F.M. and Morero, R.D. Protein-induced fusion of phospholipid vesicles of heterogeneous sizes. Biochem. Biophys. Res. Commun. 262 (1999) 586-590.
  • 7. Posse, E., de Arcuri, B.F. and Morero, R.D. Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. Biochim. Biophys. Acta 1193 (1994) 101-106.
  • 8. Merlini, G. and Bellotti, V. Lysozyme: a paragmatic molecule for the investigation of protein structure, function and misfolding. Clin. Chim. Acta 357 (2005) 168-172.
  • 9. Frare, E., Polverino de Laureto, P., Zurdo, J., Dobson, C. and Fontana, A. A highly amyloidogenic region of hen lysozyme. J. Mol. Biol. 340 (2004) 1153-1165.
  • 10. Sato, T., Mattison, K.W., Dubin, P.L., Kamachi, M. and Morishima, Y. Effect of protein aggregation on the binding of lysozyme to pyrene-labeled polyanions. Langmuir 14 (1998) 5430-5437.
  • 11. Tsunoda, T., Imura, T., Kadota, M., Yamazaki, T., Yamauchi, H., Kwon, O., Yokoyama, S., Sakai, H. and Abe, M. Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes. Colloids Surf. B Biointerfaces 20 (2001) 155-163.
  • 12. Dimitrova, M.N., Matsumura, H., Terezova, N. and Neytchev, V. Binding of globular proteins to lipid membranes studied by isothermal titration calorimetry and fluorescence. Colloids Surf. B Biointerfaces 24 (2002) 53-61.
  • 13. Ioffe, V.M. and Gorbenko, G.P. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies. Biophys. Chem. 114 (2005) 199-204.
  • 14. Ioffe, V.M., Gorbenko, G.P., Deligeorgiev, T., Gadjev, N. and Vasilev, A. Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe. Biophys. Chem. 128 (2007) 75-86.
  • 15. Bergers, J.J., Vingerhoeds, M.H., van Bloois, L., Herron, J.N., Jassen, L.H., Fisher, M.J. and Crommeli, D. The role of protein charge in protein-lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of watersoluble, globular proteins. Biochemistry 32 (1993) 4641-4649.
  • 16. Mastromatteo, M., Lucera, A., Siniqaqlia, M. and Corbo, M.R. Synergetic antimicrobial activity of lysozyme, nisin, and EDTA against Listeria monocytigenes in ostrich meat patties. J. Food Sci. 75 (2010) M422-M429.
  • 17. Yan, H. and Hancock, R.E.W. Synergistic interactions of mammalian antimicrobial defense peptides. Antimicrob. Agents Chemother. 45 (2001) 1558-1560.
  • 18. Kasprzewska, A. Plant chitinases – regulation and function. Cell. Mol. Biol. Lett. 8 (2003) 809-824.
  • 19. Salton, M.R.J. The properties of lysozyme and its action on microorganisms. Microbiol. Mol. Biol. Rev. 21 (1957) 82-99.
  • 20. Benkerroum, N. Antimicrobial activity of lysozyme with special relevance to milk. Afr. J. Biotechnol. 7 (2008) 4856-4867.
  • 21. Masschalck, B., Deckers, D. and Michiels, C.W. Lytic and nonlytic mechanism of inactivation of gram-positive bacteria by lysozyme. J. Food Prot. 65 (2002) 1916-1923.
  • 22. Bera, A., Biswas, R., Herbert, S., Kulauzovic, E., Weidenmaier, C., Peschel, A. and Götz, F. Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J. Bact. 189 (2007) 280-283.
  • 23. Hunter, H.N., Jing, W., Schibli, D.J., Trinha, T., Park, Y., Kim, S.C. and Vogel, H.J. The interactions of antimicrobial peptides derived from lysozyme with model membrane systems. Biochim. Biophys. Acta 1668 (2005) 175-189.
  • 24. Ibrahim, H.R., Thomas, U. and Pellegrini, A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J. Biol. Chem. 276 (2001) 43767-43774.
  • 25. Ellison, R.T. and Giehl, T.J. Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88 (1991) 1080-1091.
  • 26. Hancock, R.E.W. and Chapple, D.S. Peptide antibiotics Antimicrob. Agents Chemother. 43 (1999) 1317-1323.
  • 27. Keller, R.C.A. The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: a possible general feature. Cell. Mol. Biol. Lett. 16 (2011) 40-54.
  • 28. Pellegrini, A., Thomas, U., Bramaz, N., Klauser, S., Hunziker, P. and von Fellenberg, R. Identification and isolation of a bactericidal domain in chicken egg white lysozyme. J. Appl. Microbiol. 82 (1997) 372-378.
  • 29. Silvestro, L. and Axelsen, P.H. Membrane-induced folding of cecropin A. Biophys. J. 79 (2000) 1465-1477.
  • 30. Lindeberg, M., Zakharov, S.D. and Cramer, W.A. Unfolding pathway of the colicin E1 channel protein on a membrane surface. J. Mol. Biol. 295 (2000) 679-692.
  • 31. Hancock, R.E.W. Peptide antibiotics. Lancet 349 (1997) 418-422.
  • 32. Dobson, C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. Soc. Lond. Ser. B 356 (2001) 133-145.
  • 33. Pepys, M.B., Hawkins, P.N., Booth, D.R., Vigushin, D.M., Tennent, G.A., Soutar, A.K., Totty, N., Nguyen, O., Blake, C.C.F, Terry, C.J., Feest, T.G., Zalin, A.M. and Hsuan, J.J. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362 (1993) 553-557.
  • 34. Cao, A., Hu, D. and Lai, L. Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Sci. 13 (2004) 319-324.
  • 35. Gorbenko, G.P. and Kinnunen, P.K.J. The role of lipid-protein interactions in amyloid-type protein fibril formation. Chem. Phys. Lipids. 141 (2006) 72-82.
  • 36. McLaurin, J., Yang, D.S., Yip, C.M. and Fraser, P.E. Rewiew: modulating factors in amyloid-β-fibril formation. J. Struct. Biol. 100 (2000) 259-270.
  • 37. Aisenbrey, C., Borowik, T., Byström, R., Bokvist, M., Lindström, F., Misiak, H., Sani, M. and Gröbner, G. How is protein aggregation in amyloidogenic diseases modulated by biological membranes? Eur. Biophys. J. 37 (2008) 247-255.
  • 38. Zerovnik, E. Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur. J. Biochem. 269 (2002) 3362-3371.
  • 39. Butterfield, S.M. and Lashuel, H.A. Amyloidogenic protein – membrane interactions: mechanistic insight from model systems. Angew. Chem. Int. Ed. 49 (2010) 5628-5654.
  • 40. Sparr, E., Engel, M.F.M., Sakharov, D., Sprong, M., Jacobs, J., de Kruijf, B., Hoppener, J.W.M. and Killian, J.A. Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett. 577 (2004) 117-120.
  • 41. Arispe, N., Rojas, E. and Pollard, H. Alzheimer’s disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium. Proc. Natl. Acad. Sci. USA 89 (2003) 10940-10944.
  • 42. Domanov, Y.A. and Kinnunen, P.K.J. Antimicrobial peptides temporins B and L induce formation of tubular lipid protrusions from supported phospholipid bilayers. Biophys. J. 91 (2006) 4427-4439.
  • 43. Lippert, J.L., Lindsay, R.M. and Schultz, R. Laser-Raman investigation of lysozyme-phospholipid interactions. Biochim. Biophys. Acta 599 (1980) 32-41.
  • 44. Trusova, V.M., Gorbenko, G.P., Sarkar, P., Luchowski, R., Akopova, I., Patsenker, L.D., Klochko, O., Tatarets, A.L., Kudriavtseva, Yu.O., Terpetschnig, E.A., Gryczynski, I. and Gryczynski Z. Forster resonance energy transfer evidence for lysozyme oligomerization in lipid environment. J. Phys. Chem. B. 114 (2010) 16773-16782.
  • 45. Trusova, V.M., Gorbenko, G.P., Akopova, I., Molotkovsky, J.G., Gryczynski, I., Borejdo, J. and Gryczynski Z. Morphological changes of supported lipid bilayers induced by lysozyme: planar domain formation vs. multilayer stacking. Colloids Surf. B. 80 (2010) 219-226.
  • 46. Gorbenko, G.P. and Trusova, V.M. Effects of oligomeric lysozyme on structural state of model membranes. Biophys. Chem. 154 (2011) 73-81.
  • 47. Sankaram, M. and Marsh. D. Protein-lipid interactions with peripheral membrane proteins. In: Protein-lipid interactions, Elsevier, 1993, 127-162.
  • 48. Filgueiras, M.H. and Op den Kamp, J.A. Cardiolipin, a major phospholipid of Gram-positive bacteria that is not readily extractable, Biochim. Biophys. Acta 620 (1980) 332-337.
  • 49. Teuber, M. and Bader, J. Action of polymyxin B on bacterial membranes: phosphatidylglycerol- and cardiolipin-induced susceptibility to polymyxin B in Acholeplasma laidlawii B. Antimicrob. Agents Chemother. 9 (1976) 26-35.
  • 50. Boldyrev, I.A., Zhai, X., Momsen, M.M., Brockman, H.L., Brown, R.E. and Molotkovsky, J.G. New BODIPY lipid probes for fluorescence studies of membranes. J. Lipid Res. 48 (2007) 1518-1532.
  • 51. Mui, B., Chow, L. and Hope, M. Extrusion technique to generate liposomes of defined size. Meth. Enzymol. 367 (2003) 3-14.
  • 52. Richter, R., Mukhopadhyay, A. and Brisson, A. Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 85 (2003) 3035-3047.
  • 53. Holley, M., Eginton, C., Schaefer, D. and Brown, L.R. Characterization of amyloidogenesis of hen lysozyme in concentrated ethanol solution. Biochem. Biophys. Res. Commun. 373 (2008) 164-168.
  • 54. Kapanidis, A.N., Lee, N.K., Laurence, T.A., Doose, S., Margeat, E. and Weiss, A. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 101 (2004) 8936-8941.
  • 55. Sjöback, R., Nygren, J. and Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A 51 (1995) L7-L21.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-384b7162-30d7-4851-8e6f-8079488515a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.