PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |

Tytuł artykułu

Assessing synergistic ultrafiltration membrane fouling by TiO2 nanoparticles and humic acid using interaction energy analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This research attempts to elucidate the effect of humic acid (HA) on TiO₂ nanoparticle ultrafiltration (UF) membrane fouling, and quantitatively analyze the synergistic membrane fouling mechanisms using interaction energies. The extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory was employed to analyze the interaction energies and predict UF membrane fouling. Membrane fouling effects were studied during the dead-end filtration of individual TiO₂ and HA-TiO₂ mixtures using two kinds of polymeric UF membranes. It was found that HA-TiO₂ mixtures lead to greater flux declines than individual TiO₂ . For specific foulant, the hydrophobic PVDF membrane showed relative severe membrane fouling than hydrophilic PES membrane. As for the HA-TiO₂ mixture, much higher irreversible fouling was observed compared with that of individual TiO₂ . Moreover, this study highlights the importance of HA concentration in synergistic fouling effects of the HA-TiO₂ mixture. The increase of HA concentration caused an increase of contact angle and lower interaction energy, thus aggravating membrane fouling. Results illustrated that synergistic membrane fouling by TiO₂ and HA could be successfully explained using the xDLVO analysis. The extent of membrane fouling turned out to be dominated by Lewis acid-base interaction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

5

Opis fizyczny

p.2259-2266,fig.,ref.

Twórcy

autor
  • Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
autor
  • Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
autor
  • Shandong Daojian Environmental Protection Technology Co., Ltd. Jinan 250014, China
autor
  • Department of Environmental Engineering, Texas A&M University, Kingsville 700 University Boulevard, Kingsville, TX 78363-8202, USA
autor
  • Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China

Bibliografia

  • 1. Liu H.H., Cohen Y. Multimedia environmental distribution of engineered nanomaterials. Environmental science & technology. 48 (6), 3281, 2014.
  • 2. Hegde K., Brar S.K., Verma M. Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnology for Environmental Engineering. 1 (1), 5, 2016.
  • 3. Kowalska-Góralska M., Senze M. Biocidal properties of silver-nanoparticles in water environments. Polish Journal of Environmental Studies. 24 (4), 1641, 2015.
  • 4. von Moos.N., Slaveykova V.I. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae-state of the art and knowledge gaps. Nanotoxicology. 8 (6), 605, 2014.
  • 5. Guo H., Wyart Y., Perot J. Low-pressure membrane integrity tests for drinking water treatment: A review. Water research. 44 (1), 41, 2010.
  • 6. Springer F., Laborie S., Guigui C. Removal of SiO₂ nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: investigation of process efficiency, deposit properties and fouling mechanism. Separation and Purification Technology. 108, 6, 2013.
  • 7. Trzaskus K.W. Towards controlled fouling and rejection in dead-end microfiltration of nanoparticles-Role of electrostatic interactions. Journal of membrane science. 496, 174, 2015.
  • 8. Singh G., Song L. Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration. Journal of Membrane Science. 303 (1), 112, 2007.
  • 9. Yin T., Walker H.W., Chen D. Influence of pH and ionic strength on the deposition of silver nanoparticles on microfiltration membranes. Journal of Membrane Science. 449, 9, 2014.
  • 10. Henry C., Brant J.A. Mechanistic analysis of microfiltration membrane fouling by buckminsterfullerene (C 60) nanoparticles. Journal of membrane science. 415, 546, 2012.
  • 11. Henry C., Dorr B., Brant J.A. Buckminsterfullerene (C 60) nanoparticle fouling of microfiltration membranes operated in a cross-flow configuration. Separation and purification technology. 100, 30, 2012.
  • 12. Yang K., Lin D., Xing B. Interactions of humic acid with nanosized inorganic oxides. Langmuir. 25 (6), 3571, 2009.
  • 13. Philippe A., Schaumann G.E. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environmental science & technology. 48 (16), 8946, 2014.
  • 14. Schulz M., Soltani A. Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM). Journal of Membrane Science. 507, 154, 2016.
  • 15. Jermann D., Pronk W., Boller M. Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling. Environmental science & technology. 42 (24), 9129, 2008.
  • 16. Li Q., Elimelech M. Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter. Journal of Membrane Science. 278 (1), 72, 2006.
  • 17. Lin T., Lu Z.J., Chen W. Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach. Journal of Membrane Science. 461, 49, 2014.
  • 18. Loosli F. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution. Science of the Total Environment. 535, 28, 2015.
  • 19. Chen L., Tian Y., Cao C. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology. Water research. 46 (8), 2693, 2012.
  • 20. Brant J.A., Childress A.E. Assessing short-range membrane-colloid interactions using surface energetics. Journal of Membrane Science. 203 (1), 257, 2002.
  • 21. Van Oss C.J. Acid-base interfacial interactions in aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 78, 1, 1993.
  • 22. Xiao K., Wang X., Huang X. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration. Journal of Membrane Science. 373 (1), 140, 2011.
  • 23. Springer F., Laborie S., Guigui C. Removal of SiO₂ nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: investigation of process efficiency, deposit properties and fouling mechanism. Separation and Purification Technology. 108, 6, 2013.
  • 24. Jermann D., Pronk W., Kägi R. Influence of interactions between NOM and particles on UF fouling mechanisms. Water research. 42 (14), 3870, 2008.
  • 25. Tian J., Ernst M., Cui F. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions. Journal of membrane science. 446, 1, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-384486b8-25ea-4ca5-b64f-31174d56814d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.