PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 2 |

Tytuł artykułu

Alisma plantago-aquatica L.: the cytoskeleton of the suspensor development

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The actin and the tubulin cytoskeleton organization during the differentiation of the embryo-suspensor in Alisma plantago-aquatica was studied in comparison with the development of embryo, using immunofluorescence detection and rhodamine-phalloidin assay. At the early stage of the suspensor basal cell development (from 2- to ~10-celled embryos) microfilaments form an abundant network in the cytoplasm of the basal cell, while the microtubules form a delicate network. At the mature stage of development (from a dozen to several dozen-celled embryos), in the suspensor basal cell, the microfilaments and microtubules were localized from micropylar to chalazal pole of the cell. At the micropylar end of the basal cell a high amount of actin and tubulin material was observed. The microfilaments were mainly arranged parallel whereas numerous bundles of microtubules distributed longitudinally or transversally to the long axis of the cell. At this stage of basal cell functioning, some bundles of microtubules appeared to pass close to the nucleus surface. Microtubules were also observed distributed at the chalazal pole of the basal cell. At the senescence stage of the suspensor basal cell (>100-celled embryos) the actin and tubulin filaments disorganize, some disrupted microfilaments and microtubules were observed in the cytoplasm of the basal cell. At all stages of the suspensor basal cell development in the embryo cells an extensive actin and tubulin network was observed.

Wydawca

-

Rocznik

Tom

83

Numer

2

Opis fizyczny

p.159-166,fig.,ref.

Twórcy

  • Department of Plant Cytology and Embryology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
  • Department of Plant Cytology and Embryology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland

Bibliografia

  • 1. Raghavan V. Embryogenesis in Angiosperms. A development and experimental study. Cambrige: Cambrige University Press; 1986.
  • 2. Bohdanowicz J. Alisma embryogenesis: the development and ultrastructure of the suspensor. Protoplasma. 1987;137(2–3):71–83. http://dx.doi.org/10.1007/BF01281143
  • 3. Kozieradzka-Kiszkurno M, Bohdanowicz J. Development and cytochemistry of the embryo suspensor in Sedum. Acta Biol Cracov SerBot. 2006;48(2):67–72.
  • 4. Yeung EC, Clutter ME. Embryogeny of Phaseolus coccineus: the ultrastructure and development of the suspensor. Can J Bot.1979;57(2):120–136. http://dx.doi.org/10.1139/b79-021
  • 5. Cremonini R, Cionini PG. Extra DNA synthesis in embryo suspensor cells of Phaseolus coccineus. Protoplasma. 1977;91(3):303–313. http://dx.doi.org/10.1007/BF01281953
  • 6. Singh MB, Bhalla PL, Malik CP. Activity of some hydrolytic enzymes in autolysis of the embryo suspensor in Tropaeolum majus L. AnnBot. 1980;45(5):523–527.
  • 7. Yeung EC, Meinke DW. Embryogenesis in Angiosperms: development of the suspensor. Plant Cell. 1993;5(10):1371. http://dx.doi.org/10.2307/3869789
  • 8. Schwartz BW, Vernon DM, Meinke DW. Development of the suspensor: differentiation, communication, and programmed celldeath during plant embryogenesis. In: Larkins BA, Vasil IK, editors.Cellular and molecular biology of plant seed development.Dordrecht: Springer Netherlands; 1997. p. 53–72. http://dx.doi.org/10.1007/978-94-015-8909-3_2
  • 9. Gunning BES, Pate JS. Transfer cells. In: Robards AW, editor. Dynamic aspects of plant ultrastructure. London: McGraw-Hill; 1974.p. 441–480.
  • 10. Talbot MJ, Offler CE, McCurdy DW. Transfer cell wall architecture: a contribution towards understanding localized wall deposition.Protoplasma. 2002;219(3–4):197–209. http://dx.doi.org/10.1007/s007090200021
  • 11. Kozieradzka-Kiszkurno M, Świerczyńska J, Bohdanowicz J. Embryogenesis in Sedum acre L.: structural and immunocytochemical aspects of suspensor development. Protoplasma. 2011;248(4):775–784. http://dx.doi.org/10.1007/s00709-010-0248-z
  • 12. Nagl W. Endopoliploidy and polyteny in differentiation and evolution. Amsterdam: Oxford North-Holland Publishing Company; 1978.
  • 13. D’Amato F. Polyploidy in cell differentiation. Caryologia. 1989;42(3–4): 183–211. http://dx.doi.org/10.1080/00087114.1989.10796966
  • 14. Brady T. Feulgen cytophotometric determination of the DNA content of the embryo proper and suspensor cells of Phaseolus coccineus. CellDiff. 1973;2(2):65–75. http://dx.doi.org/10.1016/0045-6039(73)90022-5
  • 15. Nagl W. Early embryogenesis in Tropaeolum majus L.: ultrastructure of the embryo-suspensor. Bioch Physiol Pflanz. 1976;170:253–260.
  • 16. Bohdanowicz J. Karyological anatomy of the suspensor in Alisma L. I. Alisma plantago-aquatica L. Acta Biol Cracov Ser Bot. 1973;16:235–248.
  • 17. Świerczyńska J, Bohdanowicz J. The cytoskeleton of the embryosuspensor in Gagea lutea (L.) Ker Gawl. Acta Biol Cracov Ser Bot.2008;50(1 suppl):73.
  • 18. Świerczyńska J, Bohdanowicz J. The immunocytochemical studies of the embryo-suspensor in Gagea lutea (L.) Ker-Gawl. Acta Biol CracSer Bot. 2010;52(1 suppl):41.
  • 19. Świerczyńska J, Bohdanowicz J. The cytoskeleton of the embryosuspensor in Phaseolus coccineus L. Acta Biol Crac Ser Bot. 2012;52(1 suppl):83.
  • 20. Sonobe S, Shibaoka H. Cortical fine actin filaments in higher plant cells visualized by rhodamine-phalloidin after pretreatment withm-maleimidobenzoyl N-hydroxysuccinimide ester. Protoplasma.1989;148(2–3):80–86. http://dx.doi.org/10.1007/BF02079325
  • 21. Huang BQ, Russell SD. Fertilization in Nicotiana tabacum: cytoskeletal modifications in the embryo sac during synergid degeneration: a hypothesis for short-distance transport of sperm cells prior to gametefusion. Planta. 1994;194(2):200–214. http://dx.doi.org/10.1007/BF01101679
  • 22. Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW. An actin network is present in the cytoplasm throughout the cell cycleof carrot cells and associates with the dividing nucleus. J Cell Biol.1987;105(1):387–395. http://dx.doi.org/10.1083/jcb.105.1.387
  • 23. Świerczyńska J, Bohdanowicz J. Microfilament cytoskeleton of endosperm chalazal haustorium of Rhinanthus serotinus (Scrophulariaceae).Acta Biol Crac Ser Bot. 2003;45(1):143–148.
  • 24. Bohdanowicz J, Szczuka E, Świerczyńska J, Sobieska J, Kościńska-Pająk M. The distribution of microtubules during regular and disturbedmicrosporogenesis and pollen grain development in Gagea lutea (L.)Ker.-Gaw. Acta Biol Crac Ser Bot. 2005;47:89–96.
  • 25. Brown RC, Lemmon BE, Mullinax JB. Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioningtechniques using polyethylene glycol (PEG) and Steedman’s wax. BotActa. 1989;102(1):54–61. http://dx.doi.org/10.1111/j.1438-8677.1989.tb00067.x
  • 26. Vitha S, Baluška F, Jasik J, Volkmann D, Barlow PW. Steedman’s wax for F-actin visualization. In: Staiger CJ, Baluška F, Volkmann D,Barlow PW, editors. Actin: a dynamic framework for multiple plantcell functions. Dordrecht: Springer Netherlands; 2000. p. 619–636.http://dx.doi.org/10.1007/978-94-015-9460-8_35
  • 27. Maheshwari P. An introduction to the embryology of angiosperms. New York, NY: McGrraw-Hill; 1950.
  • 28. Kozieradzka-Kiszkurno M, Płachno BJ, Bohdanowicz J. New data about the suspensor of succulent angiosperms: ultrastructure andcytochemical study of the embryo-suspensor of Sempervivum arachnoideumL. and Jovibarba sobolifera (Sims) Opiz. Protoplasma. 2012;249(3):613–624. http://dx.doi.org/10.1007/s00709-011-0297-y
  • 29. Brodsky VY, Uryvaeva IV. Genome multiplication in growth and development. Biology of polyploid and polytene cells. London:Cambridge University Press; 1985.
  • 30. Nagl W. Polyploidy in differentiation and evolution. Inter J Cell Clon. 1990;8(4):216–223. http://dx.doi.org/10.1002/stem.5530080404
  • 31. Joubès J, Chevalier C. Endoreduplication in higher plants. Plant Mol Biol. 2000;43(5–6):735–745. http://dx.doi. org/10.1023/A:1006446417196
  • 32. Willemse MTM, van Lammeren AAM. Structure and function of the microtubular cytoskeleton during megasporogenesis and embryosac development in Gasteria verrucosa (Mill.) H. Duval. Sex PlantReprod. 1988;82:631–634.
  • 33. Bednara J, Willemse MTM, van Lammeren AAM. Organization of the actin cytoskeleton during megasporogenesis in Gasteria verrucosavisualized with fluorescent-labelled phalloidin. Acta Bot Neerl.1990;39:43–48.
  • 34. Zee SY, Ye XL. Changes in the pattern of organization of the microtubular cytoskeleton during megasporogenesis in Cymbidium sinense. Protoplasma. 1995;185(3–4):170–177. http://dx.doi.org/10.1007/ BF01272857
  • 35. Huang BQ, Ye. XL, Yeung E, Zee SY. Embryology of Cymbidium sinense: the microtubule organization of early embryos. Ann Bot.1998;81(6):741–750. http://dx.doi.org/10.1006/anbo.1998.0628
  • 36. Tung SH, Ye XL, Yeung EC, Zee SY. Ultrastructural aspects of megasporogenesis in Cymbidium sinensie (Orchidaceae). Lindleyana.1999;14:178–192.
  • 37. Tung SH, Ye XL, Zee SY, Yeung EC. The microtubular cytoskeleton during megasporogenesis in the nun orchid, Phaiustankervillae. New Phytol. 2000;146(3):503–513. http://dx.doi.org/10.1046/j.1469-8137.2000.00656.x
  • 38. Ye XL, Zee SY, Yeung EC. Suspensor development in the nun orchid Phaius tankervilliae. Inter J Plant Sci. 1997;162:1053–1063.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-38331d8f-1828-4d1d-b84e-1f24713123c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.