PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

Adsorption of Co(II) on graphene oxides from aqueous solution

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Graphene oxide (GO) was synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transformed infrared spectra (FT-IR). The adsorption of Co(II) on GO was studied as a function of contact time, pH, ionic strength, humic acid, Co(II) concentration, and temperature. The adsorption of Co(II) is strongly dependent on the pH values and weakly dependent on ionic strength. The adsorption thermodynamics of Co(II) on GO was carried out at 303, 313, and 333 K to obtain the corresponding thermodynamic data (ΔH0, ΔS0, and ΔG0), which suggested that the adsorption of Co(II) on GO is a spontaneous and endothermic process. GO provided a promising candidate for the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

p.2675-2682,fig.,ref.

Twórcy

autor
  • School of Chemistry and Chemical Engineering, Sichuan University of Arts and Sciences, Dazhou 635000, P.R. China
autor
  • School of Chemical and Environmental Engineering, Wuyi Unicersity, Jiangmen 529020, P.R. China
autor
  • School of Chemistry and Chemical Engineering, Sichuan University of Arts and Sciences, Dazhou 635000, P.R. China

Bibliografia

  • 1. MORENO-CASTILLA C., Alvarez-Merino M. A., Lopez-Ramon M. V., Rivera -Utrilla J. Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter. Langmuir, 20, 8142, 2004.
  • 2. LI J., GUO Z., ZHANG S., WANG X. Enrich and seal radionuclides in magnetic agarose microspheres. Chem. Eng. J., 172 (2–3), 892, 2011.
  • 3. Gudelis A., Druteikiene R., Luksiene B., Gvozdaite R., Nielsen S. P., Hou X., Mazeika J., Petrosius R. Assessing deposition levels of 55 Fe, 60 Co and 63 Ni in the Ignalina NPP environment. J. Environ. Radioactiv., 101, 464, 2010.
  • 4. Bukhari A. S., Mohamed H. E. S., Broos K. V., Stalin A., Singhal R. K., Venubabu P. Histological variations in liver of freshwater fish Oreochromis mossambicus exposed to 60 Co gamma irradiation. J. Environ. Radioactiv., 113, 57, 2012.
  • 5. Zhao Y., Li J., Zhang S., Chen H., Shao D. Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites. RSC Adv., 3,18952, 2013.
  • 6. Li J., Hu J., Sheng G., Zhao G.,. Huang Q. Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite.Colloid. Surface A., 349, 195, 2009.
  • 7. Ohnuki T., Aoyagi H., Kitatsuji Y., Samadfam M., Kimura Y., Purvis O. W. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI) .J. Environ. Radioactiv., 77, 339, 2004.
  • 8. Wang Q., Chen L., Sun Y. B. Removal of radiocobalt from aqueous solution by oxidized MWCNT. J. Radioanal. Nucl. Ch., 291, 787, 2012.
  • 9. Gunnarsson M., Jakobsson A. M., Ekberg S., Albinsson Y., Ahlberg E. Sorption Studies of Cobalt(II) on Colloidal Hematite Using Potentiometry and Radioactive Tracer Technique. J. Colloid. Interf. Sci., 231, 326, 2000.
  • 10. Chen H., Li J., Shao D., Ren X., Wang X. Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution.Chem. Eng. J., 210, 475, 2012.
  • 11. Chen C., Xu D., Tan X., Wang X. Sorption behavior of Co(II) on γ-AlO in the presence of humic acid. J. Radioanal. Nucl. Ch., 273, 227, 2007.
  • 12. Song W., Hu J., Zhao Y., Shao D., Li J. Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. Rsc Adv., 3, 9514 , 2013.
  • 13. Rengaraj S., Moon S. H. Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins. Water Res., 36, 1783, 2002.
  • 14. Xu D., Shao D., Chen C., Ren A., Wang X. Effect of pH and fulvic acid on sorption and complexation of cobalt onto bare and FA bound MX-80 bentonite. Radiochim. Acta., 94, 97, 2006.
  • 15. Zhang S., Niu H., Guo Z., Chen Z., Wang H., Xu J. Impact of environmental conditions on the sorption behavior of radiocobalt in TiO2/eggshell suspensions. J. Radioanal. Nucl. Ch., 289, 479, 2011.
  • 16. Zhao G.X., Li J.X., Ren X.M., Chen C.L., Wang X.K. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol., 45, 10454 , 2011.
  • 17. Chandra V., Park J., Chun Y., Lee J.W., Hwang I.C., Kim K.S. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. Acs. Nano., 4, 3979, 2010.
  • 18. Romanchuk A.Y., Slesarev A.S., Kalmykov S.N., Kosynkin D.V., Tour J.M. Graphene oxide for effective radionuclide removal.Phys. Chem. Chem. Phys., 15, 2321, 2013.
  • 19. Shao D., Hou G., Li J., Wen T., Ren X., Wang X. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem. Eng. J., 255, 604, 2014.
  • 20. Zhang S., Zeng M., Xu W., Li J., Li J., Xu J., Wang X. Polyaniline nanorods dotted on graphene oxide nanosheets as a novel super adsorbent for Cr(VI). Dalton T., 42, 7854, 2013.
  • 21. Yang X., Li J., Wen T., Ren X., Huang Y., Wang X. Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloid. Surface A, 422, 118, 2013.
  • 22. Long R., Yang R. Carbon nanotubes as superior sorbent for dioxin removal.J. Am. Chem. Soc., 123, 2058, 2001.
  • 23. Wang X., Chen C., Du J., Tan X., Xu D., Yu S. Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated gamma-Al2O3: a chelating resin exchange study. Environ. Sci. Technol., 39, 7084, 2005.
  • 24. Li J., Chen S., Sheng G., Hu J., Tan X., Wang X. Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes Chem. Eng. J., 166, 551, 2011.
  • 25. Shao D., Hu J., Chen C., Sheng G., Ren X., Wang X. Polyaniline Multiwalled Carbon Nanotube Magnetic Composite Prepared by Plasma-Induced Graft Technique and Its Application for Removal of Aniline and Phenol. J. Phys. Chem. C, 114, 21524, 2010.
  • 26. Brumfiel G. Graphene speeds pair to Stockholm win. Nature, 467, 642, 2010.
  • 27. Rafiee MA. Graphene-based Composite Materials. Nature, 442, 282, 2006.
  • 28. Ren X., Li J., Tan X., Shi W., Chen C., Shao D., Wen T., Wang L., Zhao G., Sheng G., Wang X. Impact of Al2O3 on the aggregation and deposition of graphene oxide. Environ. Sci. Technol., 48, 5493, 2014.
  • 29. Yang X., Chen C., Li J., Zhao G., Ren X., Wang X. Graphene oxide-iron oxide and reduced graphene oxideiron oxide hybrid materials for the removal of organic and inorganic pollutants. Rsc Adv., 2, 8821, 2012.
  • 30. Chen H., Li J., Ren X., Sun Y., Zhang S., Wen T., Wang X. Study on the acid–base surface property of the magnetite graphene oxide and its usage for the removal of radiostrontium from aqueous solution. Radiochim. Acta, 101, 785, 2013.
  • 31. Sheng G., Li J., Shao D., Hu J., Chen C., Chen Y., Wang X. Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J. Hazard. Mater., 178, 333, 2010.
  • 32. Chen C., Wang X. Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. Ind. Eng. Chem. Res., 45, 9144, 2006.
  • 33. Zhang J., Zhai J., Zhao F., Tao Z. Study of soil humic substances by cross-polarization magic angle spinning ja:math nuclear magnetic resonance and pyrolysis-capillary gas chromatography. Anal. Chim. Acta., 378, 177, 1999.
  • 34. Hirata M., Gotou T., Horiuchi S., Fujiwara M., Ohba M. Thin-film particles of graphite oxide 1: : Highyield synthesis and flexibility of the particles. Carbon, 42, 2929, 2004.
  • 35. Tao Z.Y., Zhang J., Zhai J.J. Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy. Ana. Chim. Acta, 395, 199, 1999.
  • 36. Ho Y. S., Wase D. A. J., Forster C. F. Kinetic Studies of Competitive Heavy Metal Adsorption by Sphagnum Moss Peat. Environ. Technol., 17, 71, 1996.
  • 37. Fan Q.H., Tan X.L., Li J.X., Wang X.K., Wu W.S., Montavon G. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques.Environ. Sci. Technol., 43, 5776, 2009.
  • 38. Xu D., Chen C., Tan X., Hu J., Wang X. Sorption of Th(IV) on Na-rectorite: Effect of HA, ionic strength, foreign ions and temperature. Appl. Geochem., 22, 2892, 2007.
  • 39. Ren X., Wang S., Yang S., Li J. Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. J. Radioanal. Nucl. Ch., 283, 253, 2010.
  • 40. Heard W.N. Some experiments on the precipitation of suspensoid protein by various ions and some suggestions as to its cause. J Physiol-London, 45, 27, 1912.
  • 41. Mercer K.L., Tobiason J.E. Removal of Arsenic from High Ionic Strength Solutions: Effects of Ionic Strength, pH, and preformed versus in situ formed HFO.Environ. Sci. Technol., 42, 3797, 2008.
  • 42. LIU X., Huang YS., Li J.X. Graphene oxides with different oxidation degrees for Co(II) ion pollution management. Chem. Eng. J. 302, 763, 2016.
  • 43. Sachs S., Bernhard G. Influence of humic acids on the actinide migration in the environment: suitable humic acid model substances and their application in studies with uranium-a review. J. Radioanal. Nucl. Ch., 290, 17, 2011.
  • 44. Hyung H., Fortner J. D., Hughes J. B., Kim J. H. Natural organic matter stabilizes carbon nanotubes in the aqueous phase.Environ. Sci. Technol., 41, 179, 2007.
  • 45. Wang S. W., Hu J., Li J. X., Dong Y. H. Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite. J. Hazard. Mater., 167, 44, 2009.
  • 46. Zhao Y., Li J., Zhao L., Zhang S., Huang Y., Wu X., Wang X. Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J., 235, 275, 2014.
  • 47. Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc., 40, 1361, 1918.
  • 48. Demirbas E. Adsorption of cobalt(II) ions from aqueous solution onto activated carbon prepared from hazelnut shells. Adsorpt. Sci. Technol., 21, 951, 2003.
  • 49. Chen L., Huang Y., Huang L., Liu B., Wang G., Yu S. Characterization of Co(II) removal from aqueous solution using bentonite/iron oxide magnetic composites. J. Radioanal. Nucl. Ch., 290, 675, 2011.
  • 50. Huang Y., Chen L., Wang H.L. Removal of Co(II) from aqueous solution by using hydroxyapatite. J. Radioanal. Nucl. Ch., 291, 777, 2012.
  • 51. Zein R., Suhaili R., Earnestly F., Indrawati , Munaf E. Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell. J. Hazard. Mater., 181, 52, 2010.
  • 52. Qiu W., Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chem. Eng. J., 145, 483,

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3813380d-aa15-4839-930f-ceb458f49105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.