PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 4 |

Tytuł artykułu

The expression of the eotaxins IL-6 and CXCL8 in human epithelial cells from various levels of the respiratory tract

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Airway epithelium acts as multifunctional site of response in the respiratory tract. Epithelial activity plays an important part in the pathophysiology of obstructive lung disease. In this study, we compare normal human epithelial cells from various levels of the respiratory tract in terms of their reactivity to pro-allergic and pro-inflammatory stimulation. Normal human nasal, bronchial and small airway epithelial cells were stimulated with IL-4 and IL-13. The expressions of the eotaxins IL-6 and CXCL8 were evaluated at the mRNA and protein levels. The effects of pre-treatment with IFN-γ on the cell reactivity were measured, and the responses to TNF-α, LPS and IFN-γ were evaluated. All of the studied primary cells expressed CCL26, IL-6 and IL-8 after IL-4 or IL-13 stimulation. IFN-γ pre-treatment resulted in decreased CCL26 and increased IL-6 expression in the nasal and small airway cells, but this effect was not observed in the bronchial cells. IL-6 and CXCL8 were produced in varying degrees by all of the epithelial primary cells in cultures stimulated with TNF-α, LPS or IFN-γ. We showed that epithelial cells from the various levels of the respiratory tract act in a united way, responding in a similar manner to stimulation with IL-4 and IL-13, showing similar reactivity to TNF-α and LPS, and giving an almost unified response to IFN-γ pre-stimulation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

4

Opis fizyczny

p.612-630,fig.,ref.

Twórcy

  • Department of Internal Medicine, Pneumonology and Allergology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
  • Department of Internal Medicine, Pneumonology and Allergology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
autor
  • Department of Internal Medicine, Pneumonology and Allergology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
  • Department of Internal Medicine, Pneumonology and Allergology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland

Bibliografia

  • 1. Lloyd, C.M. and Saglani, S. Asthma and allergy: the emerging epithelium. Nat. Med. 16 (2010) 273-274.
  • 2. Knight, D.A. and Holgate, S.T. The airway epithelium: structural and functional properties in health and disease. Respirology 8 (2003) 432-446.
  • 3. Liu, Y-J. Thymic stromal lymphopoietin: master switch for allergic inflammation. J. Exp. Med. 203 (2006) 269-273.
  • 4. Proud, D. and Leigh, R. Epithelial cells and airway diseases. Immunol. Rev. 242 (2011) 186-204.
  • 5. Cao, J., Ren, G., Gong, Y., Dong, S., Yin, Y. and Zhang, L. Bronchial epithelial cells release IL-6, CXCL1 and IL-8 upon mast cell interaction. Cytokine 56 (2011) 823-831.
  • 6. Danila, E., Jurgauskiene, L., Norkuniene, J. and Malickaite, R. BAL fluid cells in newly diagnosed pulmonary sarcoidosis with different clinical activity. Ups. J. Med. Sci. 114 (2009) 26-31.
  • 7. Siva, R., Green, R.H., Brightling, C.E., Shelley, M., Hargadon, B., McKenna, S., Monteiro, W., Berry, M., Parker, D., Wardlaw, A.J. and Pavord, I.D. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur. Respir. J. 29 (2007) 906-913.
  • 8. Brightling, C.E., Symon, F.A., Birring, S.S., Bradding, P., Pavord, I.D. and Wardlaw, A.J. TH2 cytokine expression in bronchoalveolar lavage fluid T lymphocytes and bronchial submucosa is a feature of asthma and eosinophilic bronchitis. J. Allergy Clin. Immunol. 110 (2002) 899-905.
  • 9. Gordon, S.B. and Read, R.C. Macrophage defences against respiratory tract infections. Br. Med. Bull. 61 (2002) 45-61.
  • 10. Douwes, J., Gibson, P., Pekkanen, J. and Pearce, N. Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57 (2002) 643-648.
  • 11. Van Wetering, S., Zuyderduyn, S., Ninaber, D.K., van Sterkenburg, M.A.J.A., Rabe, K.F. and Hiemstra, S. Epithelial differentiation is a determinant in the production of eotaxin-2 and -3 by bronchial epithelial cells in response to IL-4 and IL-13. Mol. Immunol. 44 (2007) 803-811.
  • 12. Tomkinson, A., Duez, C., Cieslewicz, G., Pratt, J.C., Joetham, A., Shanafelt, M.C., Gundel, R. and Gelfand, E.W. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J. Immunol. 166 (2001) 5792-5800.
  • 13. Takizawa, H., Ohtoshi, T., Yamashita, N., Oka, T. and Ito, K. Interleukin 6- receptor expression on human bronchial epithelial cells: regulation by IL-1 and IL-6. Am. J. Physiol. 270 (1996) 346-352.
  • 14. Cao, J., Wong, C.K., Yin, Y. and Lam, C.W.K. Activation of human bronchial epithelial cells by inflammatory cytokines IL-27 and TNF-alpha: implications for immunopathophysiology of airway inflammation. J. Cell. Physiol. 223 (2010) 788-797.
  • 15. Ge, Q., Moir, L.M., Black, J.L., Oliver, B.G. and Burgess, J.K. TGFβ1 induces IL-6 and inhibits IL-8 release in human bronchial epithelial cells: the role of Smad2/3. J. Cell. Physiol. 225 (2010) 846-854.
  • 16. Xie, X.H., Law, H.K.W., Wang, L.J., Li, X., Yang, X.Q. and Liu, E.M. Lipopolysaccharide induces IL-6 production in respiratory syncytial virusinfected airway epithelial cells through the toll-like receptor 4 signaling pathway. Pediatr. Res. 65 (2009) 156-162.
  • 17. Xia, C., Shichang, Z., Tao, L., Yong, L. and Yingjie, W. Maintenance of rat hepatocytes under inflammation by coculture with human orbital fat-derived stem cells. Cell. Mol. Biol. Lett. 17 (2012) 182-195. DOI: 10.2478/s11658- 012-0004-9.
  • 18. Denning, G.M., Wollenweber, L.A., Railsback, M.A., Cox, C.D., Stoll, L.L. and Britigan, B.E. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect. Immun. 66 (1998) 5777-5784.
  • 19. Nakanaga, T., Nadel, J.A., Ueki, I.F., Koff, J.L. and Shao, M.X.G. Regulation of interleukin-8 via an airway epithelial signaling cascade. Am. J. Physiol. Lung Cell. Mol. Physiol. 292 (2007) 1289-1296.
  • 20. Li, J., Kartha, S., Iasvovskaia, S., Tan, A., Bhat, R.K., Manaligod, J.M., Page, K., Brasier, A.R. and Hershenson, M.B. Regulation of human airway epithelial cell IL-8 expression by MAP kinases. Am. J. Physiol. Lung Cell. Mol. Physiol. 283 (2002) 690-699.
  • 21. Compalati, E., Ridolo, E., Passalacqua, G., Braido, F., Villa, E. and Canonica, G.W. The link between allergic rhinitis and asthma: the united airways disease. Expert Rev. Clin. Immunol. 6 (2010) 413-423.
  • 22. Togias, A. Rhinitis and asthma: evidence for respiratory system integration. J. Allergy Clin. Immunol. 111 (2003) 1171-1183.
  • 23. Feng,C.H., Miller, M.D. and Simon, R.A. The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis. Am. J. Rhinol. Allergy 26 (2012) 187-190.
  • 24. Devalia, J.L., Sapsford, R.J., Wells, C.W., Richman, P. and Davies, R.J. Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir. Med. 84 (1990) 303-312.
  • 25. McDougall, C.M., Blaylock, M.G., Douglas, J.G., Brooker, R.J., Helms, P.J. and Walsh, G.M. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am. J. Respir. Cell. Mol. Biol. 39 (2008) 560-568.
  • 26. Comer, D.M., Elborn, J.S. and Ennis, M. Comparison of nasal and bronchial epithelial cells obtained from patients with COPD. PLoS ONE 7 (2012) e32924.
  • 27. Thavagnanam, S., Parker, J.C., McBrien, M.E., Skibinski, G., Heaney, L.G. and Shields, M.D. Effects of IL-13 on mucociliary differentiation of pediatric asthmatic bronchial epithelial cells. Pediatr. Res. 69 (2011) 95-100.
  • 28. Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (2001) 402-408.
  • 29. Pringle, E.J., Richardson, H.B., Miller, D., Cornish, D.S., Devereux, G.S., Walsh, G.M. and Turner, S.W. Nasal and bronchial airway epithelial cell mediator release in children. Pediatr. Pulmonol. 47 (2012) 1215-1225.
  • 30. Kobayashi, I., Yamamoto, S., Nishi, N., Tsuji, K., Imayoshi, M., Inada, S., Ichiamaru, T. and Hamasaki, Y. Regulatory mechanisms of Th2 cytokineinduced eotaxin-3 production in bronchial epithelial cells: possible role of interleukin 4 receptor and nuclear factor-kappaB. Ann. Allergy Asthma Immunol. 93 (2004) 390-397.
  • 31. Komiya, A., Nagase, H., Yamada, H., Sekiya, T., Yamaguchi, M., Sano, Y., Hanai, N., Furuya, A., Ohta, K., Matsushima, K., Yoshie, O., Yamamoto, K. and Hirai, K. Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells. Cell. Immunol. 225 (2003) 91-100.
  • 32. Faul, J.L., Tormey, V.J., Leonard, C., Burke, C.M., Farmer, J., Horne, S.J. and Poulter, L.W. Lung immunopathology in cases of sudden asthma death. Eur. Respir. J. 10 (1997) 301-307.
  • 33. Carroll, N., Cooke, C. and James, A. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur. Respir. J. 10 (1997) 292-300.
  • 34. Lopez-Souza, N., Favoreto, S., Wong, H., Ward, T., Yagi, S., Schnurr, D., Finkbeiner, W.E., Dolganov, G.M., Widdicombe, J.H., Boushey, H.A. and Avila, P.C. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J. Allergy Clin. Immunol. 123 (2009) 1384-1390.e2.
  • 35. Becker, S., Koren. H.S. and Henke, D.C. Interleukin-8 expression in normal nasal epithelium and its modulation by infection with respiratory syncytial virus and cytokines tumor necrosis factor, interleukin-1, and interleukin-6. Am. J. Respir. Cell Mol. Biol. 8 (1993) 20-27.
  • 36. Adler, K.B., Fischer, B.M., Wright, D.T., Cohn, L.A. and Becker, S. Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation. Ann. N. Y. Acad. Sci. 725 (1994) 128-145.
  • 37. Villarete, L.H. and Remick, D.G. Transcriptional and post-transcriptional regulation of interleukin-8. Am. J. Pathol. 149 (1996) 1685-1693.
  • 38. Ma, P., Cui, X., Wang, S., Zhang, J., Nishanian, E.V., Wang, W., Wesley, R.A. and Danner, R.L. Nitric oxide post-transcriptionally up-regulates LPSinduced IL-8 expression through p38 MAPK activation. J. Leukoc. Biol. 76 (2004) 278-287.
  • 39. Yu, Y. and Chadee, K. Prostaglandin E2 stimulates IL-8 gene expression in human colonic epithelial cells by a posttranscriptional mechanism. J. Immunol. 161 (1998) 3746-3752.
  • 40. Yu, Y., Zeng, H., Lyons, S., Carlson, A., Merlin, D., Neish, A.S. and Gewirtz, A.T. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. Am. J. Physiol. Gastrointest. Liver. Physiol. 285 (2003) 282-290.
  • 41. Blume, C., Swindle, E.J., Dennison, P., Jayasekera, N.P., Dudley, S., Monk, P., Behrendt, H., Schmidt-Weber, C.B., Holgate, S.T., Howarth, P.H., TraidlHoffmann, C. and Davies, D.E. Barrier responses of human bronchial epithelial cells to grass pollen exposure. Eur. Respir. J. 42 (2013) 87-97. DOI: 10.1183/09031936.00075612.
  • 42. Van Wissen, M., Snoek, M., Smids, B., Jansen, H.M. and Lutter, R. IFN-gamma amplifies IL-6 and IL-8 responses by airway epithelial-like cells via indoleamine 2,3-dioxygenase. J. Immunol. 169 (2002) 7039-7044.
  • 43. Heller, N.M., Matsukura, S., Georas, S.N., Boothby, M.R., Rothman, P.B., Stellato, C. and Schleimer, R.P. Interferon-gamma inhibits STAT6 signal transduction and gene expression in human airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 31 (2004) 573-582.
  • 44. Kraft, M., Djukanovic, R.M., Wilson, S.M., Holgate, S.T. and Martin, R.J. Alveolar tissue inflammation in asthma. Am. J. Respir. Crit. Care Med. 154 (1996) 1505-1510.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-37ea6cd0-ccba-4bbc-a81f-eac8566ab640
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.