PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 2 |

Tytuł artykułu

Anti-glycemic and anti-hepatotoxic effects of mangosteen vinegar rind from Garcinia mangostana against HFD/STZ-induced type II diabetes in mice

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study focuses on anti-glycemic and anti-hepatotoxic effects of mangosteen vinegar rind (MVR) on fi ve weeks high-fat diet (HFD) / single dose streptozotocin (STZ) 30 mg/kg BW induced male ICR diabetic mice. Mice were randomly divided into fi ve groups (n=6), normal control, diabetic control, and diabetic groups treated with MVR 100, 200 mg/kg BW and glibenclamide 60 mg/kg BW for one week. After the treatment, lipid profi le, glycogen and bilirubin contents, oxidative damage (malondialdehyde, MDA), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) were measured in plasma and/or liver tissues. MVR and glibenclamide treatment to HFD/STZ-induced diabetic mice signifi cantly reduced their plasma glucose, plasma lipid profi le, and hepatic lipid profi le (P<0.05). Increased hepatic glycogen content indicates improvement of insulin sensitivity. Moreover, oxidative damage markers were ameliorated in MVR- and glibenclamide-treated groups compared to the diabetic control group. MVR with phenolic compounds content of 75 mg GAE/g dry weight and antioxidant potential of 303 mmol/L Trolox/g dry weight acted as a hepatoprotective agent against oxidative damage.

Wydawca

-

Rocznik

Tom

68

Numer

2

Opis fizyczny

p.163-169,fig.,ref.

Twórcy

autor
  • Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
autor
  • Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
autor
  • Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand

Bibliografia

  • 1. Bennett L.W., Keirs R.W., Peebles E.D., Gerard P.D., Methodologies of tissue preservation and analysis of the glycogen content of the broiler chick liver. Poult. Sci., 2007, 86, 2653–2665.
  • 2. Berdja S., Smail L., Saka B., Neggazi S., Haffaf E., Benazzoug Y., Kacimi G., Boudarene L., Bouguerra S.A., Glucotoxicity induced oxidative stress and infl ammation in vivo and in vitro in Psammomys obesus: involvement of aqueous extract of Brassica rapa rapifera. Evid. Based Complement. Altern. Med., 2016, 2016, art. No. 3689208.
  • 3. Bhandari U., Chaudhari H.S., Khanna G., Najmi A.K., Antidiabetic effects of Embelia ribes extract in high fat diet and low dose streptozotocin-induced type 2 diabetic rats. Front Life Sci., 2013, 7, 186–196.
  • 4. Bligh E.G., Dyer W.J., A rapid method of total lipid extraction and purifi cation. Can. J. Biochem. Physiol., 1959, 37, 911–917.
  • 5. Bonnefont-Rousselot D., Glucose and reactive oxygen species. Curr. Opin. Clin. Nutr. Metab. Care, 2002, 5, 561–568.
  • 6. Carr T.P., Andresen C.J., Rudel L.L., Enzymatic determination of triglycerides, free cholesterol and total cholesterol in tissue lipid extracts. Clin. Biochem., 1993, 26, 39–42.
  • 7. Ceci R., Valls M.R.B., Durantin G., Dimauro I., Quaranta F., Pittaluga M., Sabatini S., Caserotti P., Parisi P., Parisi A., Caporossia D., Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biol., 2014, 2, 65–72.
  • 8. Chang W.C., Wu J.S.B., Chen C.W., Kuo P.L., Chien H.M., Wang Y.T., Shen S.C., Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and infl ammation in high-fat diet (HFD)- fed rats. Nutrients, 2015, 7, 9946–9959.
  • 9. Cordero-Herrera I., Martin M.A., Goya L., Ramos S., Cocoa flavonoids protect hepatic cells against high-glucose-induced oxidative stress: relevance of MAPKs. Mol. Nutr. Food Res., 2015, 59, 597–609.
  • 10. Das J., Sil P.C., Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids, 2012, 43, 1509–1523.
  • 11. Elgawish R.A.R., Rahman H.G.A., Abdelrazek H.M.A., Green tea extract attenuates CCl4 -induced hepatic injury in male hamsters via inhibition of lipid peroxidation and p53-mediated apoptosis. Toxicol. Rep., 2015, 2, 1149–1156.
  • 12. Gilbert E.R., Fu Z., Liu D., Development of a nongenetic mouse model of type 2 diabetes. Exp. Diab. Res., 2011, 2011, 416254.
  • 13. Goulart M., Batoreu M.C., Rodrigues A.S., Laires A., Rueff J., Lipoperoxidation production and thiol antioxidant in chromium exposed worker. Mutagenesis, 2005, 20, 311–315.
  • 14. Idris A.S., Mekky K.F.H., Abdalla B.E.E., Ali K.A., Liver function tests in type 2 Sudanese diabetic patients. Int. J. Nutr. Metab., 2011, 2, 17–21.
  • 15. Ismail N.S., Protective effects of aqueous extracts of cinnamon and ginger herbs against obesity and diabetes in obese diabetic rat. World J. Dairy Food Sci., 2014, 9, 145–153.
  • 16. Jarukamjorn K., Lao-ong T., Chatuphonprasert W., Diabetic induction in experimental mouse model. Thai Pharm. Health Sci J., 2011, 6, 229–39, [http://ejournals.swu.ac.th/index.php/ pharm/article/view/2463/2481].
  • 17. Kaisoon O., Siriamornpun S., Weerapreeyakul N., Meeso N., Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods, 2011, 3, 88–99.
  • 18. Kapoor R., Kakkar P., Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes. PLoS One, 2012, 7, 41663.
  • 19. Lee L.S., Cho C.W., Hong H.D., Lee Y.C., Choi U.K., Kim Y.C., Hypolipidemic and antioxidant properties of phenolic compound-rich extracts from white ginseng (Panax ginseng) in cholesterol-fed rabbits. Molecules, 2013, 18, 12548–12560.
  • 20. Li X., Xu Z., Jiang Z., Sun L., Ji J., Miao J., Zhang X., Li X., Huang S., Wang T., Zhang L., Hypoglycemic effect of catalpol on high-fat diet/streptozotocin-induced diabetic mice by increasing skeletal muscle mitochondrial biogenesis. Acta Biochim. Biophys. Sin., 2014, 46, 738–748.
  • 21. Lim Y.S., Lee S.S.H., Tan B.C., Antioxidant capacity and antibacterial activity of different parts of mangosteen (Garcinia mangostana Linn.) extracts. Fruits, 2013, 68, 483–489.
  • 22. Liu J., Dong H., Zhang Y., Cao M., Song L., Pan Q., Bulmer A., Adams D.B., Dong X., Wanga H., Bilirubin increases insulin sensitivity by regulating cholesterol metabolism, adipokines and PPARγ levels. Sci. Rep., 2015, 5, 9886.
  • 23. Marklund S., Marklund G., Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47, 469–474.
  • 24. Masuko T., Minami A., Iwasaki N., Majima T., Nishimura S., Lee Y.C., Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem., 2005, 339, 69–72.
  • 25. McCarty M.F., Serum bilirubin may serve as a marker for increased heme oxygenase activity and inducibility in tissues-a rationale for the versatile health protection associated with elevated plasma bilirubin. Med. Hypotheses, 2013, 81, 607–610.
  • 26. Miralles-Linares F., Puerta-Fernandez S., Bernal-Lopez M.R., Tinahones F.J., Andrade R.J., Gomez-Huelgas R., Metformininduced hepatotoxicity. Diab. Care, 2012, 35, 21.
  • 27. Moore M.C., Coate K.C., Winnick J.J., An Z., Cherrington A.D., Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr., 2012, 3, 286–294.
  • 28. Nguyen P., Leray V., Diez M., Serisier S., Bloc’h J.L., Siliart B., Dumon H., Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. (Berl)., 2008, 92, 272–283.
  • 29. Pandey A., Tripathi P., Pandey R., Srivatava R., Goswami S., Alternative therapies useful in the management of diabetes: a systematic review. J. Pharm. Bioallied Sci., 2011, 3, 504–512.
  • 30. Pandey K.B., Rizvi S.I., Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev., 2009, 2, 270–278.
  • 31. Phyu M.P., Tangpong J., Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment. Food Chem. Toxicol., 2014, 70, 151–156.
  • 32. Ramesh B., Sainath S.B., Karuna R., Sreenivasa Reddy S., Manjunatha B., Sudhakara G., Sasi Bhusana Rao B., Saralakumari D., Effect of Commiphora mukul gum resin on hepatic and renal marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart in fructose fed insulin resistant rats. BeniSuef Univ. J. Basic Appl. Sci., 2015, 4, 269–278.
  • 33. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26, 1231–1237.
  • 34. Sattayasai J., Chaonapan P., Arkaravichie T., Soi-ampornkul R., Junnu S., Charoensilp P., Samer J., Jantaravinid J., Masaratana P., Suktitipat B., Manissorn J., Thongboonkerd V., Neungton N., Moongkarndi P., Protective effects of mangosteen extract on H2 O2 -induced cytotoxicity in SK-N-SH cells and scopolamineinduced memory impairment in mice. PLoS One, 2013, 8, 85053.
  • 35. Sherwin R.S., Role of liver in glucose homeostasis. Diab. Care, 1980, 3, 261–265.
  • 36. Sivakrishnan S., Kottaimuthu A., Hepatoprotective activity of ethanolic extract of aerial parts of Albizia procera roxb (Benth.)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-378d4c9a-dd42-45e0-aab0-b58ce6de38c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.