PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 23 | 3 |

Tytuł artykułu

Experimental and simulative study on accumulator function in the process of wave energy conversion

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper, a floating-buoy wave energy converter using hydrostatic transmission system is studied. The entire work progress of wave energy power generation device is introduced, and the hydraulic transmission principles are emphasized through the simulation to verify the feasibility of design principle of hydraulic transmission system. The mathematical model of the accumulator is established and applied in the AMEsim simulation. The simulation results show that the accumulator plays an important role in the wave power hydraulic transmission system and that the correct configuration of accumulator parameters can improve the rapidity and stability of the system work. Experimental results are compared with the simulation results to validate the correctness of the simulation results. This would provide a valuable reference to the optimal design of wave power generation

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

3

Opis fizyczny

p.79-85,fig.,ref.

Twórcy

autor
  • Mechanical Engineering Institute, Shandong University, Jinan, Shandong 250061, China
autor
  • Mechanical Engineering Institute, Shandong University, Jinan, Shandong 250061, China
autor
  • Mechanical Engineering Institute, Shandong University, Jinan, Shandong 250061, China
autor
  • Mechanical Engineering Institute, Shandong University, Jinan, Shandong 250061, China
autor
  • Mechanical Engineering Institute, Shandong University, Jinan, Shandong 250061, China

Bibliografia

  • 1. Wang, S.j., Yuan, P., Li, D., Jiao, Y.H.: An overview of ocean renewable energy in China, Renew Sustain Energy Rev, Vol. 15, no. 1, pp. 91-111, 2011.
  • 2. Falnes, J.: A review of wave-energy extraction, Mar. Struct, Vol. 20, no. 4, pp. 185-201.
  • 3. Bahaj, A.B.S.: Generating electricity from the oceans, Renewable and Sustainable Energy Reviews, Vol. 15, no. 7, pp. 3399-3416, 2011.
  • 4. López, I., Andreu, J., Ceballos, S., Alegría, I.M.D., Kortabarria, I.: Review of wave energy technologies and the necessary power-equipment, Renewable and Sustainable Energy Reviews, Vol. 27, no. 6, pp. 413-434, 2013.
  • 5. Coiro, D.P., Troise, G., Calise, G., Bizzarrini, N.: Wave energy conversion through a point pivoted absorber: Numerical and experimental tests on a scaled model, Renewable Energy, Vol. 87, no. 1, pp. 317-325, 2016.
  • 6. Martínez, M., Molina, M.G., Machado, I.R.: Mercado, P.E., Watanabe, E.H., Modelling and simulation of wave energy hyperbaric converter (WEHC) for applications in distributed generation, International Journal of Hydrogen Energy, Vol. 37, no. 9, pp. 14945-14950, 2012.
  • 7. Gaspar, J.F., Calvário, M., Kamarlouei, M., Guedes Soares, C.: Power take-off concept for wave energy converters based on oil-hydraulic transformer units, Renewable Energy, no. 86, pp. 1232-1246, 2016.
  • 8. Zhang, D.H., Li, W., Lin Y.G.: Wave energy in China: current status and perspectives, Renewable energy, Vol. 34, no. 10, pp. 2089-2092, 2009.
  • 9. Bjarte-Larsson, T., Falnes, J.: Laboratory experiment on heaving body with hydraulic power take-off and latching control, Ocean Eng, Vol. 33, no. 7, pp. 847–877, 2006.
  • 10. Hals, J., Taghipour, R., Moan, and T.: Dynamics of a force-compensated two-body wave energy converter in heave with hydraulic power take-off subject to phase control, In: Proceedings of the Seventh European Wave and Tidal Energy Conference, Porto, Portugal, 2007.
  • 11. Yang, L.M., Hals, J., Moan, T.: A wear model for assessing the reliability of wave energy converter in heave with hydraulic power take-off, In: Proceedings of the Eighth European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009.
  • 12. Yang, L., Hals, J., Moan, T.: Analysis of dynamic effects relevant for the wear damage in hydraulic machines for wave energy conversion, Ocean Engineering. Vol. 37, no, 13, pp. 1089-1102, 2010.
  • 13. Falcão, A. F. de O.: Modelling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator, Ocean Engineering, Vol. 34, no. 14-15, pp. 2021-2032, 2007.
  • 14. Virvalo, T.: Hydraulic systems in wave energy application, 1st edn, World Publishing Corporation, China, pp. 56–60, 2009.
  • 15. Lin, Y, G., and Huang, W., Zhang, D.F., Li, W., Bao, J.W.: Application of Hydraulic System in Wave Energy Converter, Electrical, Information Engineering and Mechatronics 2011, Lecture Notes in Electrical Engineering. Vol. 138, pp. 275-283, 2012.
  • 16. Lopes, M.F.P., Hals, J., Gomes, R.P.F., Moan, T., Gato, L.M.C., Falcão, A.F.de O.: Experimental and numerical investigation of non-predictive phase-control strategies for a point-absorbing wave energy converter, Ocean Engineering, Vol. 36, no. 5, pp. 386-402, 2009.
  • 17. Babarit, A., Guglielmi, M., Clément, A.H.: Declutching control of a wave energy converter, Ocean Engineering, Vol. 36, no. 12-13, pp. 1015-1024, 2009.
  • 18. Zhan, X.Q., Zhang, Y.H., Zhao, K.D.: Study on Mathematical Model of Hydraulic Accumulator in Secondary Regulated System, China Mechanical Engineering, Vol. 12, no. Zl, pp. 45-46, 2001.
  • 19. Quan, L.X., Kong, X.D., GAO, Y.J., Kang, S.Q., Yao, and J.: Theory and experiment of accumulator absorbing pressure pulsation without regard to its entrance characteristics, Chinese Journal of Mechanical Engineering, Vol. 43, no. 9, pp. 28-32, 2007.
  • 20. Wang, C.W., Jiao, Z.X., Wu, S., Shang, Y.X.: An experimental study of the dual-loop control of electro-hydraulic load simulator, Chinese Journal of Aeronautics, Vol. 26, no. 6, pp. 1586-1595, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3767e6be-6c2b-410d-947d-fc00feda84fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.