PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Heavy metal-induced differential responses to oxidative stress and protection by mycorrhization in sunflowers grown in lab and field scales

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of arbuscular mycorrhizal (AM) fungi (Glomus intraradices) and of heavy metal stress on the characteristics of biomass production, as well as non-enzymatic and enzymatic variables in the roots, shoots, and leaves of sunflower (Helianthus annuus L.) plants were studied at pot and field scales. The intensity of the mycorrhizal colonization (M%) and the arbuscular abundance in the root system (A%) were found to be higher in the sunflower grown at lab scale (artificially inoculated) than that grown at field scale (natively inoculated). Thus, the AM symbiosis with the sunflower root system exposed to a different degree of pollution had a differential protective effect on plants at lab and field scales. A huge biomass of sunflower was harvested from the field compared to that obtained from the lab experiment. Furthermore, after measuring the biochemical variables of the plant parts, the results indicated a decrease in field for the superoxide dismutase and peroxidase activity, for the lipid peroxidation content, and for the assimilating pigments, while all quantified variables showed almost the same pattern of variation in all three plant parts. Consequently, it can be concluded that it is possible to use biochemical response variables, which in the case of our study are consistent with the protective effect of the fungus, as environmental biomarkers for soils with moderate pollution.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1235-1247,fig.,ref.

Twórcy

autor
  • Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Road, District 5, Bucharest, Romania
autor
  • Research Centre for Ecological Services (CESEC), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, District 5, Bucharest, Romania
autor
  • Department of Statistics, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
autor
  • Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Road, District 5, Bucharest, Romania
autor
  • Research Centre for Ecological Services (CESEC), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, District 5, Bucharest, Romania

Bibliografia

  • 1. ANN C., KAREN S., JOS R., KELLY O., ELS K., TONY R., NELE H., NATHALIE V. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant. Physiol. 168, 309, 2011.
  • 2. BENITEZ-ALFONSO Y., JACKSON D., MAULE A. Redox regulation of intercellular transport. Protoplasma 248, 131, 2011.
  • 3. RAJBIR K., JASMIT K., JYOTI M., RAKESH K., SAROJ A. Oxidative stress-implications, source and its prevention. Environ. Sci. Pollut. Res. Int. 21, (3), 1599, 2014.
  • 4. GHNAYA A.B., CHARLES G., HOURMANT A., HAMIDA J.B., BRANCHARD M. Physiological behavior of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C R Biol. 332, 363, 2009.
  • 5. BABU N.G., SARMA P.A., ATTITALLA I.H., MURTHY S.D.S. Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the cyanobacterium, Spirulina platensis. Acad. J. Plant Sci. 3, 46, 2010.
  • 6. SYTAR O., KUMAR A., LATOWSKI D., KUCZYNSKA P., STRZALKA K. PRASAD M.N.V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant 35, 985, 2013.
  • 7. CLEMENS S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707, 2006.
  • 8. AZCÓN R., DEL CARMEN PERÁLVAREZ M., ROLDÁN A., BAREA J.M. Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb. Ecol. 59, 668, 2010.
  • 9. KABATA-PENDIAS A. Trace Elements in Soils and Plants, forth (Ed.), CRC Press, Boca Raton, Florida, 2011.
  • 10. GADD G.M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, (1), 3, 2007.
  • 11. WENZEL W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321, 385, 2008.
  • 12. NEAGOE A., MERTEN D., IORDACHE V., BŰCHEL G. The effect of bioremediation methods involving different degrees of soil disturbance on the export of metals by leaching and by plant uptake. Chemie der Erde 69, 57, 2009.
  • 13. NEAGOE A., IORDACHE V., BERGMANN H., KOTHE E. Pattern of variations of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J. Plant Nutr. Soil Sc. 176, 273, 2013.
  • 14. NEAGOE A., STANCU P., NICOARĂ A., ONETE M., BODESCU F., GHEORGHE R., IORDACHE V. Effects of arbuscular mycorrhizal fungi on Agrostis capillaris grown on amended mine tailing substrate at pot, lysimeter and field plot scales. Environ. Sci. Pollut. Res. 21, (11), 6859, 2013.
  • 15. TURNAU K., RYSZA P., WOJTCZAK G. Metal tolerant mycorrhizal plants: a review from the perspective on industrial waste in temperate region. Arbuscular Mycorrhizal: Physiology and Function, 4, 257, 2010.
  • 16. TURNAU K., GAWROŃSKI S., RYSZKA P., ZOOK D. Mycorrhizal-Based Phytostabilization of Zn-Pb Tailings: Lessons from the Trzebionka Mining Works (Southern Poland). In: Kothe E., Varma A. (eds.) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology 31. Springer, Berlin, pp. 327-348, 2012.
  • 17. TURNAU K., PRZYBYLOWICZ W.J., RYSZKA P., ORLOWSKA E., ANIELSKA T., ANIELSKA T., MESIASZ-PRZYBYLOWICZ J. Mycorrhizal fungi modify element distribution in gametophytes and sporophytes of a fern Pellaea viridis from metaliferous soils. Chemosphere 92, 1267, 2013.
  • 18. ARZANESH M., ALIKHANI H., KHAVAZI K., RAHIMIAN H., MIRANSARI M. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J. Microbiol. and Biotechnol. 27, 197, 2011.
  • 19. DAZY M., BÉRAUD E., COTELLE S., GRÉVILLIOT F., FÉRARD J.F., MASFARAUD J.F Changes in plant communities along soil pollution gradients: Responses of leaf antioxidant enzyme activities and phytochelatin contents. Chemosphere 77, 376, 2009.
  • 20. AL SAYEGH PETKOVŠEK S. Forest biomonitoring of the largest Slovene thermal power plant with respect to reduction of air pollution. Environ. Monit. Assess. 185, 1809, 2013.
  • 21. FAO-UNESCO. Soil Map of the World, 9 volumes. UNESCO, Paris, France, 1974.
  • 22. PĂUN A., NEAGOE A., BACIU I. The effects of arbuscular mycorrhizal fungi on the transfer of heavy metals and oxidative stress related parameters in sunflower exposed to multielement pollution. Revista de Chimie 63, (2), 146, 2012.
  • 23. KIRKMAN J.H., BASKER A., SURAPANENI A., MACGREGOR A.N. Potassium in the soils of New Zealand-a review. New Zeal. J. Agr. Res., 37, 207, 1994.
  • 24. FOTH H.D., ELLIS B.G. Soil Fertility, 2nd ed.; CRC Press, Boca Raton, Florida, pp. 290, 1997.
  • 25. KABATA-PENDIAS A., PENDIAS H. Trace elements in soils and plants, third (Ed.), CRC Press, Boca Raton, Florida, 2001.
  • 26. INRA. Reference Pedology, French Association of Soil Study, 332, 1995.
  • 27. GRIFFIN G., JOKELA W., ROSS D., PETTINELLI D., MORRIS T., WILF A. Recommended Soil Nitrate Tests. In: Northeastern Regional Publication (Ed.). Recommended Soil Testing Procedures for the Northeastern United States. Cooperative Bulletin No. 493, 27, 2009.
  • 28. HOWARD A.E. Agronomic thresholds for soil phosphorus in Alberta: A review. In: Alberta Soil Phosphorus Limits Project. Volume 5: Background information and reviews. Alberta Agriculture, Food and Rural Development, Lethbridge, Alberta, Canada. Publishing: Irrigation Branch Alberta Agriculture, Food and Rural Development Lethbridge, Alberta, Canada, pp. 42, 2006.
  • 29. NEAGOE A., EBENA G., CARLSSON E. The effect of soil amendments on plant performance in an area affected by acid mine drainage. Chem. Erde-Geochem. 65, 115, 2005.
  • 30. HOFFMANN G. Book of Methods, Volume 1, The analysis of soils, VDLUFA Publishing House, Darmstadt, 1991.
  • 31. PĂUN A., NEAGOE A., BACIU I. The role of fungi on alleviating the stress induced by heavy metals uptake in rye plants (Secale cereale L.) cultivated in soil from a Romanian industrial area. Revue Roumaine de Chimie 57, (2), 141, 2012.
  • 32. VON ALTEN H., BLAL B., DODD J.C., FELDMANN F., VOSATKA M. Quality control of arbuscular mycorrhizal fungi inoculum in Europe. Mycorrhyza Technology in Agriculture: from Genes to Bioproducts, edited by Gianinazzi S., Schüepp H., Barea J.M., Haselwandter K., Birkhäuser Verlag, Basel-Boston-Berlin, pp. 281-296, 2002.
  • 33. SCHMITZ O., DANNEBERG G., HUNDESHAGEN B., KLINGER A., BOTHE H. Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J. Plant Physiol. 139, 106, 1991.
  • 34. TROUVELOT A., KOUGH J.L., GIANINAZZI-PEARSON V. Measurement of VA mycorrhizal rate of a root system. Estimation methods research with functional significance. In: V. GIANINAZZI-PEARSON, GIANINAZZ S. (Eds. Phisiological and genetical aspects of mycorrhizae, INRA Press, Paris, pp. 217-221, 1986.
  • 35. LOWRY O.H., ROSEBROUGH N.J., FARR A.L., RANDALL R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265, 1951.
  • 36. MCCORD J.M., FRIDOVICH I. Superoxide dismutase: an enzymatic function for erythrocuprein. J. Biol. Chem. 244, 6049, 1969.
  • 37. LAGRIMINI L.M. Wound – induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 96, 577, 1991.
  • 38. HODGES M.D., DELONG J.M., FORNEY C.F., PRAUGE R.K. Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyannand other interfering componds. Planta, 207, 607, 1999.
  • 39. SCHOPFER P. Experimental plant physiology Introduction to the application. Volume 2, Springer, Berlin, 1989.
  • 40. GIOVANNETTI M., SCHUBERT A., CRAVERO M.C., SALUTINI L. Spore production by the vesicular-arbuscular mycorrhizal fungus Glomus monosporum as related to host species, root colonization and plant growth enhancement. Biol. Fert. Soils, 6, (2), 120, 1988.
  • 41. ZANGARO W., ROSTIROLA L.V., DE SOUZA P.B., DE ALMEIDA ALVES R., AZEVEDO MARQUES LESCANO L.E., RONDINA A.B., NOGUEIRA M.A., CARRENHO R. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza, 10, 2012.
  • 42. MARSCHNER H. Mineral Nutrition of Higher Plants, second (Ed.), Academic Press, London, pp. 889, 1995.
  • 43. SMITHS E., READ D.J. Mycorrhizal symbiosis, 3nd ed., Academic Press Hardbound, pp. 800, 2008.
  • 44. DOUBKOVÁ P., VLASÁKOVÁ E., SUDOVÁ R. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370, 149, 2013.
  • 45. ZHAO F.J., MA J.F., MEHARG A.A., MCGRATH S.P. Arsenic uptake and metabolism in plants. New Phytol. 181, 777, 2008.
  • 46. SEDIGHEH H.G., MORTAZAVIAN M., NOROUZIAN D., ATYABI M., AKBARZADEH A., HASANPOOR K., GHORBANI M. Oxidative stress and leaf senescence, BMC Research Notes 4, 477, 2011. http://www.biomedcentral.com/1756-0500/4/477.
  • 47. CHRIST B., HÖRTENSTEINER S. Mechanism and significance of chlorophyll breakdown. J. Plant Growth Regul. 33, 4, 2014.
  • 48. ABDEL LATEF A.A.H. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza, 21, (6), 495, 2011.
  • 49. CONTRERAS L., MELLA D., MOENNE A., CORREA J.A. Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquatic Toxicology 94, (2), 94, 2009.
  • 50. JOUILI H., BOUAZIZI H., EL FERJANI E. Plant peroxidases: biomarkers of metallic stress. Acta Physiol. Plant 33, 2075, 2011.
  • 51. ARUNAKUMARA K., CHARANA WALPOLA B., YOON M.H. Alleviation of phyto-toxicity of copper on agricultural plants. J. Korean Soc. Appl. Biol. Chem. 56, 505, 2013.
  • 52. HAYAT S., KHALIQUE G., IRFAN M., WANI A.S., TRIPATHI B.N., AHMAD A. Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249, 599, 2012.
  • 53. GONZÁLEZ-GUERRERO M., OGER E., BENABDELLAH K., AZCÓN-AGUILAR C., LANFRANCO L., FERROL N. Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Curr. Genet. 56, 265, 2010.
  • 54. TURNAU K., ANIELSKAT., RYSZKAP., GAWROŃSKI S., OSTACHOWICZ B. Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes – new solution for waste revegetation. Plant Soil 305, 267, 2008.
  • 55. ULTRA V.U., TANAKA S., SAKURAI K., IWASAKI K. Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290, 29, 2007.
  • 56. ULTRA V.U., TANAKA S., SAKURAI K., IWASAKI K. Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Science and Plant Nutrition 53, 499, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3693f5f9-49ca-4664-874b-79320826c1df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.