PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 4 |

Tytuł artykułu

Chondroitin sulfate metabolism in the brain

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Over the last twenty years chondroitin sulfate (CS) has become a focus of interest of neuroscience due to its indubitable role in shaping axonal growth, synaptic plasticity and glial scar forming. Various patterns of sulfation give rise to various CS molecules with different properties that are capable of interactions with a plethora of molecules, including growth factors, receptors and guidance molecules. The involvement of CS chains has been implicated in visual critical period regulation, memory formation, spinal cord regeneration. As part of proteoglycan molecules, they are widely expressed in the central nervous system, however, little is known about the enzymatic machinery responsible for CS synthesis and degradation. In this review we attempt to extract and collect the available information concerning the expression and function of enzymes of CS metabolism in the brain.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

4

Opis fizyczny

p.338-351, fig.,ref.

Twórcy

autor
  • Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
autor
  • Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Akita K, von Holst A, Furukawa Y, Mikami T, Sugahara K, Faissner A (2008) Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells 26: 798–809.
  • Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H (1999) Cloning and expression of a proteoglycan UDP‑galactose: beta‑xylose beta1,4‑galactosyltransferase I. A seventh member of the human beta4‑galactosyltransferase gene family. J  Biol Chem 274: 26165–26171.
  • Al Qteishat A, Gaffney JJ, Krupinski J, Slevin M (2006a) Hyaluronan expression following middle cerebral artery occlusion in the rat. Neuroreport 17: 1111–1114.
  • Al’Qteishat A, Gaffney J, Krupinski J, Rubio F, West D, Kumar S, Kumar P, Mitsios N, Slevin M (2006b) Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain 129: 2158–2176.
  • Bai X, Zhou D, Brown JR, Crawford BE, Hennet T, Esko JD (2001) Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3‑galactosyltransferase family (beta 3GalT6). J Biol Chem 276: 48189–48195.
  • Balmer TS, Carels VM, Frisch JL, Nick TA (2009) Modulation of perineuronal nets and parvalbumin with developmental song learning. J Neurosci 29: 12878–12885.
  • Bartus K, James ND, Bosch KD, Bradbury EJ (2012) Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 235: 5–17.
  • Beggah AT, Dours‑Zimmermann MT, Barras FM, Brosius A, Zimmermann  DR, Zurn AD (2005) Lesion‑induced differential expression and cell association of Neurocan, Brevican, Versican V1 and V2 in the mouse dorsal root entry zone. Neuroscience 133: 749–762.
  • Bhattacharyya S, Solakyildirim K, Zhang Z, Linhardt RJ Tobacman JK (2009a) Chloroquine reduces arylsulfatase B activity and increases chondroitin 4‑sulfate: implications for mechanisms of action and resistance. Malar J 8: 303.
  • Bhattacharyya S, Solakyildirim K, Zhang Z, Linhardt RJ, Tobacman JK (2009b) Cell‑bound IL‑8 increases in bronchial epithelial cells following Arylsulfatase B silencing. Am J Respir Cell Mol Biol 42: 51–61.
  • Bhattacharyya S, Zhang X, Feferman L, Johnson D, Tortella FC, Guizzetti M, Tobacman JK (2015) Decline in arylsulfatase B and Increase in chondroitin 4‑sulfotransferase combine to increase chondroitin 4‑sulfate in traumatic brain injury. J Neurochem 134: 728–739.
  • Bracey LT, Paigen K (1987) Changes in translational yield regulate tissue‑specific expression of beta‑glucuronidase. Proc Natl Acad Sci U S A 84: 9020–9024.
  • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416: 636–640.
  • Brandt AE, Distler J, Jourdian GW (1969) Biosynthesis of the chondroitin sulfate‑protein linkage region: purification and properties of a  glucuronosyltransferase from embryonic chick brain. Proc Natl Acad Sci USA 64: 374–380.
  • Carmichael ST, Kathirvelu B, Schweppe CA, Nie EH (2017) Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol 287: 384–394.
  • Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494: 559–577.
  • Carulli D, Rhodes KE, Fawcett JW (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J Comp Neurol 501: 83–94.
  • Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, Andrews MR, Deepa SS, Glant TT, Fawcett JW (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133: 2331–2347.
  • Celio MR, Blümcke I (1994) Perineuronal nets – a specialized form of extracellular matrix in the adult nervous system. Brain Res Brain Res Rev 19: 128–145.
  • Condac E, Dale GL, Bender‑Neal D, Ferencz B, Towner R, Hinsdale ME (2009) Xylosyltransferase II is a significant contributor of circulating xylosyltransferase levels and platelets constitute an important source of xylosyltransferase in serum. Glycobiology 19: 829–833.
  • Cordeiro P, Hechtman P, Kaplan F (2000) The GM2 gangliosidoses databases: allelic variation at the HEXA, HEXB, and GM2A gene loci. Genet Med 2: 319–327.
  • Couchman JR, Pataki CA (2012) An introduction to proteoglycans and their localization. J Histochem Cytochem 60: 885–897.
  • Csoka AB, Scherer SW, Stern R (1999) Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 60: 356–361.
  • Csoka AB, Frost GI, Stern R (2001) The six hyaluronidase‑like genes in the human and mouse genomes. Matrix Biol 20: 499–508.
  • Csoka AB, Stern R (2013) Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology 23: 398–411.
  • Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net‑associated proteoglycans. J Biol Chem 281: 17789–17800.
  • Egea J, García AG, Verges J, Montell E, López MG (2010) Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthritis Cartilage 18: S24–27.
  • Fox K, Caterson B (2002) Neuroscience. Freeing the brain from the perineuronal net. Science 298: 1187–1189.
  • Frost GI, Csóka AB, Wong T, Stern R (1997) Purification, cloning and expression of human plasma hyaluronidase. Biochem Biophys Res Commun 236: 10–15.
  • Fukuta M, Kobayashi Y, Uchimura K, Kimata K, Habuchi O (1998) Molecular cloning and expression of human chondroitin 6‑sulfotransferase. Biochim Biophys Acta 1399: 57–61.
  • Galtrey CM, and Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54: 1–18.
  • Gary SC, Zerillo CA, Chiang VL, Gaw JU, Gray G, Hockfield S (2000) cDNA cloning, chromosomal localization, and expression analysis of human BEHAB/brevican, a brain specific proteoglycan regulated during cortical development and in glioma. Gene 256: 139–147.
  • Giamanco KA, Matthews RT (2012) Deconstructing the perineuronal net: cellular contributions and molecular composition of the neuronal extracellular matrix. Neuroscience 218: 367–84.
  • Gilbert RJ, McKeon RJ, Darr A, Calabro A, Hascall VC, Bellamkonda RV (2005) CS‑4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 29: 545–558.
  • Glössl J, Truppe W, Kresse H (1979) Purification and properties of N‑acetylgalactosamine 6‑sulphate sulphatase from human placenta. Biochem J 181: 37–46.
  • Gogolla N, Caroni P, Lüthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325: 1258–1261.
  • Gotoh M, Sato T, Akashima T, Iwasaki H, Kameyama A, Mochizuki H, Yada T, Inaba N, Zhang Y, Kikuchi N, Kwon YD, Togayachi A, Kudo T, Nishihara S, Watanabe H, Kimata K, Narimatsu H (2002a) Enzymatic synthesis of chondroitin with a  novel chondroitin sulfate N‑acetylgalactosaminyltransferase that transfers Nacetylgalactosamine to glucuronic acid in initiation and elongation of chondroitin sulfate synthesis. J Biol Chem 277: 38189–38196.
  • Gotoh  M, Yada,T, Sato T, Akashima T, Iwasaki H, Mochizuki H, Inaba N, Togayachi A, Kudo T, Watanabe H, Kimata K, Narimatsuet H (2002b) Molecular cloning and characterization of a  novel chondroitin sulfate glucuronyltransferase that transfers glucuronic acid to N‑acetylgalactosamine. J Biol Chem 277: 38179–38188.
  • Götting C, Kuhn J, Zahn R, Brinkmann T, Kleesiek K (2000) Molecular cloning and expression of human UDP‑d‑Xylose: proteoglycan core protein beta‑d‑xylosyltransferase and its first isoform XT‑II. J Mol Biol 304: 517–528.
  • Gris P, Tighe A, Levin D, Sharma R, Brown A (2007) Transcriptional regulation of scar gene expression in primary astrocytes. Glia 55: 1145–1155.
  • Gulberti S, Lattard  V, Fondeur  M, Jacquinet JC, Mulliert G, Netter P, Magdalou J, Ouzzine M, Fournel‑Gigleux S (2005) Phosphorylation and sulfation of oligosaccharide substrates critically influence the activity of human beta1,4‑galactosyltransferase 7 (GalT‑I) and beta1,3‑glucuronosyltransferase I (GlcAT‑I) involved in the biosynthesis of the glycosaminoglycan‑protein linkage region of proteoglycans. J Biol Chem 280: 1417–1425.
  • Gulberti S, Jacquinet JC, Chabel M, Ramalanjaona N, Magdalou J, Netter P, Coughtrie MW, Ouzzine M, Fournel‑Gigleux S (2012) Chondroitin sulfate Nacetylgalactosaminyltransferase‑1 (CSGalNAcT‑1) involved in chondroitin sulfate initiation: impact of sulfation on activity and specificity. Glycobiology 22: 561–571.
  • Gushulak L, Hemming R, Martin D, Seyrantepe V, Pshezhetsky A, Triggs‑Raine B (2012) Hyaluronidase 1 and β‑hexosaminidase have redundant functions in hyaluronan and chondroitin sulfate degradation. J  Biol Chem 287: 16689–16697.
  • Hagen MW, Riddle A, McClendon E, Gong X, Shaver D, Srivastava T, Dean JM, Bai JZ, Fowke TM, Gunn AJ, Jones DF, Sherman LS, Grafe MR, Hohimer AR, Back SA (2014) Role of recurrent hypoxia‑ischemia in preterm white matter injury severity. PLoS ONE 9: e112800.
  • Harris NG, Carmichael ST, Hovda DA, Sutton RL (2009) Traumatic brain injury results in disparate regions of chondroitin sulfate proteoglycan expression that are temporally limited. J Neurosci Res 87: 2937–2950.
  • Härtig W, Mages B, Aleithe S, Nitzsche B, Altmann S, Barthel H, Krueger M, Michalski D (2017) Damaged neocortical perineuronal nets due to experimental focal cerebral ischemia in mice, rats and sheep. Front Integr Neurosci 11: 15.
  • Helting T, Roden L (1969) Biosynthesis of chondroitin sulfate. II. Glucuronosyl transfer in the formation of the carbohydrate‑protein linkage region. J Biol Chem 244: 2799–2805.
  • Hiraoka N, Nakagawa H, Ong E, Akama TO, Fukuda MN, Fukuda M (2000) Molecular cloning and expression of two distinct human chondroitin 4‑O‑sulfotransferases that belong to the HNK‑1 sulfotransferase gene family. J Biol Chem 275: 20188–20196.
  • Hobohm C, Günther A, Grosche J, Rossner S, Schneider D, Brückner G (2005) Decomposition and long‑lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. J Neurosci Res 80: 539–548.
  • Honda T, Kaneiwa T, Mizumoto S, Sugahara K, Yamada S (2012) Hyaluronidases have strong hydrolytic activity toward chondroitin 4‑sulfate comparable to that for hyaluronan. Biomolecules 2: 549–563.
  • Hou X, Yoshioka N, Tsukano H, Sakai A, Miyata S, Watanabe Y, Yanagawa Y, Sakimura K, Takeuchi K, Kitagawa H, Hensch TK, Shibuki K, Igarashi M, Sugiyama S (2017) Chondroitin sulfate is required for onset and offset of critical period plasticity in visual cortex. Sci Rep 7: 12646.
  • Ingmar B, Wasteson A (1979) Sequential degradation of a chondroitin sulphate trisaccharide by lysosomal enzymes from embryonic‑chick epiphysial cartilage. Biochem J 179: 7–13.
  • Ishii M, Maeda N (2008) Spatiotemporal expression of chondroitin sulfatesulfotransferases in the postnatal developing mouse cerebellum. Glycobiology 18: 602–614.
  • Izumikawa T, Uyama T, Okuura Y, Sugahara K, Kitagawa H (2007) Involvement of chondroitin sulfate synthase‑3 (chondroitin synthase‑2) in chondroitin polymerization through its interaction with chondroitin synthase‑1 or chondroitinpolymerizing factor. Biochem J 403: 545–552.
  • Izumikawa T, Koike T, Shiozawa S, Sugahara K, Tamura J, Kitagawa H (2008) Identification of chondroitin sulfate glucuronyltransferase as chondroitin synthase‑3 involved in chondroitin polymerization: chondroitin polymerization is achieved by multiple enzyme complexes consisting of chondroitin synthase family members. J Biol Chem 283: 11396–11406.
  • Izumikawa T, Okuura Y, Koike T, Sakoda N, Kitagawa H (2011) Chondroitin 4‑Osulfotransferase‑1 regulates the chain length of chondroitin sulfate in co‑operation with chondroitin N‑acetylgalactosaminyltransferase‑2. Biochem J 434: 321–331.
  • Izumikawa T, Koike T, Kitagawa H (2012) Chondroitin 4‑O‑sulfotransferase‑2 regulates the number of chondroitin sulfate chains initiated by chondroitin N‑acetylgalactosaminyltransferase‑1. Biochem J 441: 697–705.
  • Jaworski DM, Kelly GM, Hockfield S (1994) BEHAB, a new member of the proteoglycan tandem repeat family of hyaluronan‑binding proteins that is restricted to the brain. J Cell Biol 125: 495–509.
  • Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61: 198–223.
  • Jedrzejas MJ, Stern R (2005) Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins 61: 227–238.
  • Jones MH, Davey PM, Aplin H, Affara NA (1995) Expression analysis, genomic structure, and mapping to 7q31 of the human sperm adhesion molecule gene SPAM1. Genomics 29: 796–800.
  • Kaneiwa T, Mizumoto S, Sugahara K, Yamada S (2010) Identification of human hyaluronidase‑4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 20: 300–309.
  • Kaneiwa T, Miyazaki A, Kogawa R, Mizumoto S, Sugahara K, Yamada S (2012) Identification of amino acid residues required for the substrate specificity of human and mouse chondroitin sulfate hydrolase (conventional hyaluronidase‑4). J Biol Chem 287: 42119–42128.
  • Kang HG, Evers MR, Xia G, Baenziger JU, Schachner  M (2002) Molecular cloning and characterization of chondroitin‑4‑O‑sulfotransferase‑3. A novel member of the HNK‑1 family of sulfotransferases. J Biol Chem 277: 34766–34772.
  • Karetko‑Sysa M, Skangiel‑Kramska J, Nowicka D (2011) Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death. Exp Neurol 231: 113–126. Keino H, Sato H, Kashiwamata S (1990) Distribution of acid phosphatase and beta‑glucuronidase in the hypoplastic cerebellum of jaundiced Gunn rats. An enzyme histochemical study. Cell Tissue Res 262: 515–517.
  • Kitagawa H, Tone Y, Tamura J, Neumann KW, Ogawa T, Oka S, Kawasaki T, Sugahara K (1998) Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan‑protein linkage region of proteoglycans. J Biol Chem 273: 6615–6618.
  • Kitagawa H, Fujita M, Ito N, Sugahara K (2000) Molecular cloning and expression of a novel chondroitin 6‑O‑sulfotransferase. J Biol Chem 275: 21075–21080.
  • Kitagawa H, Taoka M, Tone Y, Sugahara K (2001a) Human glycosaminoglycan glucuronyltransferase I gene and a related processed pseudogene: genomic structure, chromosomal mapping and characterization. Biochem J 358: 539–546.
  • Kitagawa H, Uyama T, Sugahara K (2001b) Molecular cloning and expression of a human chondroitin synthase, J Biol Chem 276: 38721–38726.
  • Kitagawa H, Izumikawa T, Uyama T, Sugahara K (2003) Molecular cloningof a chondroitin polymerizing factor that cooperates with chondroitin synthase for chondroitin polymerization. J Biol Chem 278: 23666–23671.
  • Kitagawa H, Tsutsumi K, Ikegami‑Kuzuhara A, Nadanaka S, Goto F, Ogawa T, Sugahara K (2008) Sulfation of the galactose residues in the glycosaminoglycan protein linkage region by recombinant human chondroitin 6‑O‑sulfotransferase‑1. J Biol Chem 283: 27438–27443.
  • Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5: 195–208. Kobayashi M, Sugumaran G, Liu J, Shworak NW, Silbert JE, Rosenberg RD (1999) Molecular cloning and characterization of a human uronyl 2‑sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate. J Biol Chem 274: 10474–10480.
  • Kobayashi T, Yan H, Kurahashi Y, Ito Y, Maeda H, Tada T, Hongo K, Nakayama J (2013) Role of GalNAc4S‑6ST in astrocytic tumor progression. PLoS One 8: e54278.
  • Koike T, Izumikawa T, Tamura J, Kitagawa H (2009) FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region. Biochem 421: 157–162.
  • Koike T, Izumikawa T, Sato B, Kitagawa H (2014) Identification of phosphatase that dephosphorylates xylose in the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 289: 6695–6708
  • Kroh H, Renkawek K (1973) Cytochemical distribution of beta‑glucuronidase activity in experimental brain tumors and brain tissue in vivo and in vitro. Histochemie 34: 317–324.
  • Kusche‑Gullberg M, Kjellén L (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 13: 605–611.
  • Laabs TL, Wang H, Katagiri Y, McCann T, Fawcett JW, Geller HM (2007) Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte‑derived chondroitin sulfate proteoglycans. J Neurosci 27: 14494–14501.
  • Lin Y, Kimmel LH, Myles DG, Primakoff P (1993) Molecular cloning of the human and monkey sperm surface protein PH‑20. Proc Natl Acad Sci U S A 90: 10071–10075.
  • Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JCF (2011) 6‑Sulphated chondroitins have a  positive influence on axonal regeneration. PLoS ONE 6: e21499.
  • Lindwall C, Olsson M, Osman AM, Kuhn HG, Curtis MA (2013) Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex. Brain Res 1503: 62–77.
  • Lohmander LS, Hascall VC, Yanagishita M, Kuettner KE, Kimura JH (1986) Post translational events in proteoglycan synthesis: kinetics of synthesis of chondroitin sulfate and oligosaccharides on the core protein. Arch Biochem Biophys 250: 211–227.
  • Maeda N (2010) Structural variation of chondroitin sulfate and its roles in the central nervous system. Cent Nerv Syst Agents Med Chem 10: 22–31.
  • Marella  M, Ouyang J, Zombeck J, Zhao C, Huang  L, Connor RJ, Phan KB, Jorge MC, Printz MA, Paladini RD, Gelb AB, Huang Z, Frost GI, Sugarman BJ, Steinman  L, Wei G, Shepard HM, Maneval DC, Lapinskas PJ (2017) PH20 is not expressed in murine CNS and oligodendrocyte precursor cells. Ann Clin Transl Neurol 4: 191–211.
  • Maurel P, Rauch U, Flad M, Margolis RK, Margolis RU (1994) Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell‑adhesion molecules, is an extracellular variant of a receptor‑type protein tyrosine phosphatase. Proc Natl Acad Sci U S A 91: 2512–2516.
  • Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, Hockfield S (2002) Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 22: 7536–7547.
  • Mazany KD, Peng T, Watson CE, Tabas I, Williams KJ (1998) Human chondroitin 6‑sulfotransferase: cloning, gene structure, and chromosomal localization. Biochim Biophys Acta 1407: 92–97.
  • McKeon RJ, Jurynec MJ, Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19: 10778–10788.
  • McRae PA, Baranov E, Rogers SL, Porter BE (2012) Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 36: 3471–3482.
  • Midura RJ, Calabro A, Yanagishita M, Hascall VC (1995) Nonreducing end structures of chondroitin sulfate chains on aggrecan isolated from Swarm rat chondrosarcoma cultures. J Biol Chem 270: 8009–8015.
  • Mikami T, Kitagawa H (2013) Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830: 4719–4733.
  • Milev P, Maurel P, Chiba A, Mevissen  M, Popp S, Yamaguchi Y, Margolis RK, Margolis RU (1998) Differential regulation of expression of hyaluronan‑binding proteoglycans in developing brain: aggrecan, versican, neurocan, and brevican. Biochem Biophys Res Commun 247: 207–212.
  • Mitsunaga‑Nakatsubo K, Kusunoki S, Kawakami H, Akasaka K, Akimoto Y (2009) Cell‑surface arylsulfatase A and B on sinusoidal endothelial cells, hepatocytes, and Kupffer cells in mammalian livers. Med Mol Morphol 42: 63–69.
  • Miyata S, Nishimura Y, Nakashima T (2007) Perineuronal nets protect against amyloid beta‑protein neurotoxicity in cultured cortical neurons. Brain Res 1150: 200–206.
  • Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H (2012) Persistent cortical plasticity by upregulation of chondroitin 6‑sulfation. Nat Neurosci 15: 414–422.
  • Miyata S, Kitagawa H (2017) Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 1861: 2420–2434.
  • Miyata S, Nadanaka S, Igarashi M, Kitagawa H (2018) Structural variation of chondroitin sulfate chains contributes to the molecular heterogeneity of perineuronal nets. Front Integr Neurosci 12: 3.
  • Morawski M, Brückner MK, Riederer P, Brückner G, Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188: 309–315.
  • Morawski  M, Pavlica S, Seeger G, Grosche J, Kouznetsova E, Schliebs R, Brückner G, Arendt T (2010) Perineuronal nets are largely unaffected in Alzheimer model Tg2576 mice. Neurobiol Aging 31: 1254–1256.
  • Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T (2012) Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol 22: 547–561.
  • Motas S, Haurigot  V, Garcia  M, Marcó S, Ribera A, Roca C, Sánchez X, Sánchez V, Molas M, Bertolin J, Maggioni L, León X, Ruberte J, Bosch F (2016) CNS‑directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome). JCI Insight 1: e86696. Nikolovska K, Spillmann D, Seidler DG (2015) Uronyl 2‑O sulfotransferase potentiates Fgf2‑induced cell migration. J Cell Sci 128: 460–471.
  • Ogawa H, Shionyu M, Sugiura N, Hatano S, Nagai N, Kubota Y, Nishiwaki K, Sato T, Gotoh M, Narimatsu H, Shimizu K, Kimata K, Watanabe H (2010) Chondroitin sulfate synthase‑2/chondroitin polymerizing factor has two variants with distinct function. J Biol Chem 285: 34155–34167.
  • Ohtake S, Ito Y, Fukuta  M, Habuchi O (2001) Human N‑acetylgalactosamine 4‑sulfate 6‑O‑sulfotransferase cDNA is related to human B cell recombination activating gene‑associated gene. J Biol Chem 276: 43894–43900.
  • Ohtake‑Niimi S, Kondo S, Ito T, Kakehi S, Ohta T, Habuchi H, Kimata K, Habuchi O (2010) Mice deficient in N‑acetylgalactosamine 4‑sulfate 6‑o‑sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N‑acetylgalactosamine 4,6‑bissulfate residues and exhibit decreased protease activity in bone marrow derived mast cells. J Biol Chem 285: 20793–20805.
  • Okuda H, Tatsumi K, Horii‑Hayashi N, Morita S, Okuda‑Yamamoto A, Imaizumi K, Wanaka A (2014) OASIS regulates chondroitin 6‑O‑sulfotransferase 1 gene transcription in the injured adult mouse cerebral cortex. J Neurochem 130: 612–625.
  • Oegema TRJ, Kraft EL, Jourdian GW, Van Valen TR (1984) Phosphorylation of chondroitin sulfate in proteoglycans from the Swarm rat chondrosarcoma. J Biol Chem 259: 1720–1726.
  • Pizzorusso T, Medini P, Berardi N (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298: 1248–1251.
  • Pizzorusso T, Medini P, Landi S, Baldini S, Berardi N, Maffei L (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A 103: 8517–8522.
  • Pönighaus C, Ambrosius  M, Casanova JC, Prante C, Kuhn J, Esko JD, Kleesiek K, Götting C (2007) Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J  Biol Chem 282: 5201–5206.
  • Prabhakar  V, Sasisekharan R (2006) The biosynthesis and catabolism of galactosaminoglycans. Adv Pharmacol 53: 69–115.
  • Prabhu S, Bhattacharyya S, Guzman G, Macias  V, Kajdacsy‑Balla A, Tobacman JK (2011) Extra‑lysosomal localization of arylsulfatase B in human colonic epithelium. J Histochem Cytochem 59: 328–335.
  • Preston M, Gong X, Su W, Matsumoto SG, Banine F, Winkler C, Foster S, Xing R, Struve J, Dean J, Baggenstoss B, Weigel PH, Montine TJ, Back SA, Sherman LS (2013) Digestion products of the PH20 hyaluronidase inhibit remyelination. Ann Neurol 73: 266–280
  • Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, ten  Dam GB, Furukawa Y, Mikami T, Sugahara K, Toida T, Geller HM, Fawcett JW (2005) Chondroitin 6‑sulphate synthesis is up‑regulated in injured CNS, induced by injury‑related cytokines and enhanced in axon‑growth inhibitory glia. Eur J Neurosci 21: 378–390.
  • Rauch U, Gao P, Janetzko A, Flaccus A, Hilgenberg L, Tekotte H, Margolis RK, Margolis RU (1991) Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of brain identified with monoclonal antibodies. J Biol Chem 266: 14785–14801.
  • Rauch U, Karthikeyan L, Maurel P, Margolis RU, Margolis RK (1992) Cloning and primary structure of neurocan, a  developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J Biol Chem 267: 19536–19547.
  • Robins E, Hirsch HE, Emmons SS (1968) Glycosidases in the nervous system. I. Assay, some properties, and distribution of beta‑galactosidase, beta‑glucoronidase, and beta‑glucosidase. J Biol Chem 243: 4246–4252.
  • Sakai A, Nakato R, Ling YW, Hou XB, Hara N, Iijima T, Yanagawa Y, Kuwano R, Okuda S, Shirahige K, Sugiyama S (2017) Genome‑Wide target analyses of otx2 homeoprotein in postnatal cortex. Front Neurosci 11: 307.
  • Sato T, Gotoh  M, Kiyohara K, Akashima T, Iwasaki H, Kameyama  A, Mochizuki H, Yada T, Inaba N, Togayachi A, Kudo T, Asada  M, Watanabe H, Imamura T, Kimata K, Narimatsu H (2003) Differential roles of two N‑acetylgalactosaminyltransferases, CSGalNAcT‑1, and a  novel enzyme, CSGalNAcT‑2. Initiation and elongation in synthesis of chondroitin sulfate. J Biol Chem 278: 3063–3071.
  • Shuttleworth TL, Wilson MD, Wicklow BA, Wilkins JA, Triggs‑Raine BL (2002) Characterization of the murine hyaluronidase gene region reveals complex organization and cotranscription of Hyal1 with downstream genes, Fus2 and Hyal3 J Biol Chem 277: 23008–23018.
  • Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54: 177–186.
  • Siebert JR, Conta Steencken A, Osterhout DJ (2014) Chondroitin sulfate proteoglycans in the nervous system: inhibitors to repair. Biomed Res Int 2014: 845323.
  • Slaker  M, Churchill  L, Todd RD, Blacktop JM, Zuloaga DG, Raber J, Darling RA, Brown TE, Sorg BA (2015) Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine‑induced conditioned place preference memory. J Neurosci 35: 4190–4202.
  • Sloane JA, Batt C,Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107: 11555–11560.
  • Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109: 111–130.
  • Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10: 518–527.
  • Sugahara K, Mikami T (2007) Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 17: 536–545.
  • Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, Hensch TK (2008) Experience‑dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134: 508–520.
  • Suttkus A, Rohn S, Jäger C, Arendt T, Morawski M (2012) Neuroprotection against iron‑induced cell death by perineuronal nets ‑ an in vivo analysis of oxidative stress. Am J Neurodegener Dis 1: 122–129.
  • Suttkus A, Holzer  M, Morawski  M, Arendt T (2016) The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau‑protein. Neuroscience 313: 225–235.
  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88: 1277–1340.
  • Tachi Y, Okuda T, Kawahara N, Kato N, Ishigaki Y, Matsumoto T (2015) Expression of hyaluronidase‑4 in a rat spinal cord hemisection model. Asian Spine J 9: 7–13.
  • Tao J, Liu W, Shang G, Zheng Y, Huang J, Lin R, Chen L (2015) MiR‑207/352 regulate lysosomal‑associated membrane proteins and enzymes following ischemic stroke. Neuroscience 305: 1–14.
  • Tone Y, Pedersen LC, Yamamoto T, Izumikawa T, Kitagawa H, Nishihara J, Tamura J, Negishi M, Sugahara K (2008) 2‑o‑phosphorylation of xylose and 6‑osulfation of galactose in the protein linkage region of glycosaminoglycans influence the glucuronyltransferase‑I activity involved in the linkage region synthesis. J Biol Chem 283: 16801–16807.
  • Tropea D, Caleo  M, Maffei  L (2003) Synergistic effects of brain‑derived neurotrophic factor and chondroitinase ABC on retinal fiber sprouting after denervation of the superior colliculus in adult rats. J Neurosci 23: 7034–7044.
  • Uchimura K, Muramatsu H, Kadomatsu K, Fan QW, Kurosawa N, Mitsuoka C, Kannagi R, Habuchi O, Muramatsu T (1998) Molecular cloning and characterization of an N‑acetylglucosamine‑6‑O‑sulfotransferase. J Biol Chem 273: 22577–22583.
  • Uchimura K, Kadomatsu K, Nishimura H, Muramatsu H, Nakamura E, Kurosawa N, Habuchi O, El‑Fasakhany FM, Yoshikai Y, Muramatsu T (2002) Functional analysis of the chondroitin 6‑sulfotransferase gene in relation to lymphocyte subpopulations, brain development, and oversulfated chondroitin sulfates. J Biol Chem J 277: 1443–1450.
  • Uyama T, Kitagawa H, Tamura Ji J, Sugahara K (2002) Molecular cloning and expression of human chondroitin N‑acetylgalactosaminyltransferase: the key enzyme for chain initiation and elongation of chondroitin/ dermatan sulfate on the protein linkage region tetrasaccharide shared by heparin/heparan sulfate. J Biol Chem 277: 8841–8846.
  • Uyama T, Kitagawa H, Tanaka J, Tamura J, Ogawa T, Sugahara K (2003) Molecular cloning and expression of a second chondroitin N‑acetylgalactosaminyltransferase involved in the initiation and elongation of chondroitin/dermatan sulfate. J Biol Chem 278: 3072–3078.
  • Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P, Yu ZX, Tan F, Santiago L, Mills EM, Wang Y, Symes AJ, Geller HM (2008) Chondroitin‑4‑ sulfation negatively regulates axonal guidance and growth. J Cell Sci 121: 3083–3091.
  • Wakamatsu N, Benoit G, Lamhonwah AM, Zhang ZX, Trasler JM, Triggs‑Raine BL, Gravel RA (1994) Structural organization, sequence, and expression of the mouse HEXA gene encoding the alpha subunit of hexosaminidase A. Genomics 24: 110–119.
  • Wei G, Bai X, Sarkar AK, Esko JD (1999) Formation of HNK‑1 determinants and the glycosaminoglycan tetrasaccharide linkage region by UDP‑GlcUA: Galactose beta1, 3 glucuronosyltransferases. J  Biol Chem 274: 7857–7864.
  • Vijayan VK, Cotman CW (1983) Lysosomal enzyme changes in young and aged control and entorhinal‑lesioned rats. Neurobiol Aging 4: 13–23.
  • Xing G, Ren M, Verma A (2014) Divergent temporal expression of hyaluronan metabolizing enzymes and receptors with craniotomy vs. controlled‑cortical impact injury in rat brain: A pilot study. Front Neurol 5: 173.
  • Yada T, Sato T, Kaseyama H, Gotoh  M, Iwasaki H, Kikuchi N, Kwon YD, Togayachi A, Kudo T, Watanabe H, Narimatsu H, Kimata K (2003) Chondroitin sulfate synthase‑3. Molecular cloning and characterization. J Biol Chem 278: 39711–39725.
  • Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57 : 276–289.
  • Yamauchi S, Hirahara Y, Usui H, Takeda Y, Hoshino M, Fukuta M, Kimura JH, Habuchi O (1999) Purification and characterization of chondroitin 4‑sulfotransferase from the culture medium of a  rat chondrosarcoma cell line. J Biol Chem 274: 2456–2463.
  • Yamauchi S, Mita S, Matsubara T, Fukuta M, Habuchi H, Kimata K, Habuchi O (2000) Molecular cloning and expression of chondroitin 4‑sulfotransferase. J Biol Chem 275: 8975–8981.
  • Yamauchi S, Kurosu A, Hitosugi M, Nagai T, Oohira A, Tokudome S (2011) Differential gene expression of multiple chondroitin sulfate modification enzymes among neural stem cells, neurons and astrocytes. Neurosci Lett 493: 107–111.
  • Yang S, Hilton S, Alves JN, Saksida LM, Bussey T, Matthews RT, Kitagawa H, Spillantini MG, Kwok JCF, Fawcett JW (2017) Antibody recognizing 4‑sulfated chondroitin sulfate proteoglycans restores memory in tauopathy‑induced neurodegeneration. Neurobiol Aging 59: 197–209.
  • Yi JH, Katagiri Y, Susarla B, Figge D, Symes AJ, Geller HM (2012) Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. J Comp Neurol 520: 3295–3313.
  • Yin J, Sakamoto K, Zhang H, Ito Z, Imagama S, Kishida S, Natori T, Sawada M, Matsuyama Y, Kadomatsu K (2009) Transforming growth factor‑beta1 upregulates keratan sulfate and chondroitin sulfate biosynthesis in microglias after brain injury. Brain Res 1263: 10–22.
  • Zhang X, Bhattacharyya S, Kusumo H, Goodlett CR, Tobacman JK, Guizzetti  M (2014) Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin‑4‑sulfate: dysregulation by ethanol. Glia 62: 259–271.
  • Zhou D, Dinter A, Gutierrez Gallego R, Kamerling JP, Vliegenthart JF, Berger  EG, Hennet T (1999) A ß1,3‑N‑acetylglucosaminyltransferase with poly‑N‑acetyllactosamine synthase activity is structurally related to ß1,3‑galactosyltransferases. Proc Natl Acad Sci USA 96: 406–411.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-35a5debe-9694-4982-8187-f3cd77662980
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.