PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |

Tytuł artykułu

Enrichment capacity of lead in water by aquatic plants

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Phytoremediation is a promising, low-cost and environmentally friendly technology. By simulating different concentrations of Pb, Pb+Zn and Pb+EDTA in aqueous solutions, taking Acorus calamus, Eichhornia crassipes and Iris tectorum as experimental material, hydroponics was used to study the enrichment of aquatic plants to Pb in water under different conditions. The results show that Eichhornia crassipes has the best bioconcentration capacity, Acorus calamus has good bioconcentration and Iris tectorum has weak bioconcentration. The bioconcentration factors (BCFs) are more than 1 and the BCFs of the underground parts are greater than that of the aboveground parts. However, the translocation factors (TFs) are less than 1. The presence of Zn enhances the enrichment of the aquatic plants to Pb. The presence of EDTA reduces the enrichment, but promotes the transfer of Pb from underground parts to aboveground parts. All of the conclusions can provide reference for the application of aquatic plants for Phytoremediation of Pb.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.2745-2754,fig.,ref.

Twórcy

autor
  • School of Environment, Institute of Natural Disaster Research, Northeast Normal University, Changchun, China
autor
  • College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
autor
  • School of Environment, Institute of Natural Disaster Research, Northeast Normal University, Changchun, China
autor
  • School of Environment, Institute of Natural Disaster Research, Northeast Normal University, Changchun, China

Bibliografia

  • 1. Rezania S., Taib S.M., Din M.F.M., Dahalan F.A., Kamyab H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials. 318, 587, 2016.
  • 2. Dixit R., Wasiullah , Malavi ya D., Pandiyan K., Singh U.B., Sahu A., Shukla R., Singh B.P., Rai J.P., Sharma P.K., Lade H., Paul D. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability. 7 (2), 2189, 2015.
  • 3. Gill L.W., Ring P., Case y B., Higgins N.M.P., Johnston P.M. Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Science of the Total Environment. 601, 32, 2017.
  • 4. Yan L., Li L., Ni X., Li C., Li J. Accumulation of Soil Heavy Metals in Five Species of Wetland Plants.Acta Botanica Boreali-Occidentalia Sinica. 36 (10), 2078, 2016.
  • 5. Cicero -Fernández D., Peña-Fernández M., Expósito-Camargo J.A., Antizar -Ladislao B. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis. New Biotechnology. 38, 56, 2017.
  • 6. Bernardino C.A.R., Mahler C.F., Preussler K.H., Novo L.A.B. State of the Art of Phytoremediation in Brazil - Review and Perspectives. Water Air and Soil Pollution. 227 (8), 272, 2016.
  • 7. Singh A., Prasad S.M. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. International Journal of Environmental Science and Technology. 12 (1), 353, 2015.
  • 8. Romeh A.A., Khamis M.A., Metwall y S.M. Potential of Plantago major L. for Phytoremediation of Lead-Contaminated Soil and Water. Water Air and Soil Pollution. 227 (1), 9, 2016.
  • 9. Gaur N., Flora G., Yadav M., Tiwari A. A review with recent advancements on bioremediationbased abolition of heavy metals. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS. 16 (2), 180, 2014.
  • 10. Pan Y., Wang H., Gu Z., Xiong G., Yi F. Accumulation and translocation of heavy metals by macrophytes. Acta Ecologica Sinica. 30 (23), 6430, 2010.
  • 11. Ali H., Khan E., Sajad M.A. Phytoremediation of heavy metals – Concepts and applications. Chemosphere. 91 (7), 869, 2013.
  • 12. Li J., Luan Y., Sun X., Yu H., Qi N., Wu X. Research Advances in Remediation of Heavy Metal Contaminated Water Bodies by Aquatic Plants. World Forestry Research. 28 (2), 31, 2015.
  • 13. Li N., Li Z., Fu Q., Zhuang P., Guo B., Li H. Agricultural Technologies for Enhancing the Phytoremediation of Cadmium-Contaminated Soil by Amaranthus hypochondriacus L. Water Air and Soil Pollution. 224 (9), 1673, 2013.
  • 14. Mahar A., Wang P., Ali A., Awasthi M.K., Lahori A.H., Wang Q., Li R., Zhang Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety. 126, 111, 2016.
  • 15. Souza L.A., Piotto F.A., Nogueirol R.C., Azevedo R.A. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Scientia Agricola. 70 (4), 290, 2013.
  • 16. Boechat C.L., Pistóia V.C., Gianelo C., Camargo F.A.O. Accumulation and translocation of heavy metal by spontaneous plants growing on multimetal- contaminated site in the Southeast of Rio Grande do Sul state, Brazil. Environmental Science and Pollution Research. 23 (3), 2371, 2016.
  • 17. Chirakkara R.A., Cameselle C., Redd y K.R. Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Reviews in Environmental Science and Bio/Technology. 15 (2), 299, 2016.
  • 18. Galal T.M., Gharib F.A., Ghazi S.M., Mansour K.H. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Environmental Science and Pollution Research. 24 (27), 21636, 2017.
  • 19. Bonanno G., Cirelli G.L. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicology and Environmental Safety. 143, 92, 2017.
  • 20. Bingöl N.A., Özmal F., Akın B. Phytoremediation and Biosorption Potential of Lythrum salicaria L. for Nickel Removal from Aqueous Solutions. Polish Journal of Environmental Studies. 26 (6), 2479, 2017.
  • 21. Lu D., Huang Q., Deng C., Zheng Y. Phytoremediation of Copper Pollution by Eight Aquatic Plants. Polish Journal of Environmental Studies. 27 (1), 175, 2018.
  • 22. Li J., Du Z., Zou C., Dai Z., Du D., Yan C. The mutual restraint effect between the expansion of Alternanthera philoxeroides (Mart.) Griseb and cadmium mobility in aquatic environment. Ecotoxicology and Environmental Safety. 148, 237, 2018.
  • 23. Dogan M., Karatas M., Aasim M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study. Ecotoxicology and Environmental Safety. 148, 431, 2018.
  • 24. Mahdavian K., Ghaderian S.M., Torkzadeh - Mahani M. Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead – zinc mining area, Iran. Journal of Soils and Sediments. 17 (5), 1310, 2017.
  • 25. Zhang Y., Yin C., Cao S., Cheng L., Wu G., Guo J. Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Science of the Total Environment. 622, 1499, 2018.
  • 26. Papazoglou E.G., Fernando A.L. Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.) grown on heavy metal contaminated soil. Industrial Crops & Products. 107, 463, 2017.
  • 27. Feng J., Lin Y., Yang Y., Shen Q., Huang J., Wang S., Zhu X., Li Z. Tolerance and bioaccumulation of Cd and Cu in Sesuvium portulacastrum. Ecotoxicology and Environmental Safety. 147, 306, 2018.
  • 28. Patek -Mohd N., Abdu A., Jusop S., Abdul - Hamid H., Karim M., Nazrin M., Akbar M., Jamaluddin A.S. Potentiality of Melastoma malabathricum as Phytoremediators of soil contaminated with sewage sludge. Scientia Agricola. 75 (1), 27, 2018.
  • 29. Retamal -Salgado J., Hirzel J., Walter I., Matus J. Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment. International Journal of Environmental Research and Public Health. 14 (11), 1399, 2017.
  • 30. Pérez -Sirvent C., Hernández -Pérez C., Martínez -Sánchez M.J., García-Lorenzo M.L., Bech J. Metal uptake by wetland plants: implications for phytoremediation and restoration. Journal of Soils and Sediments. 17 (5), 1384, 2017.
  • 31. Chanu L.B., Gupta A. Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere. 156, 407, 2016.
  • 32. Fu J., Han Y., Li Y., Xu M. Effects of single and combined stresses of Pb, Cd on growth and some physiological indexes of Ins ensata var.hortensis seedling. Journal of Plant Resources and Environment. 19 (3), 23, 2010.
  • 33. Yang G., Wu J., Tang Y. Research advances in plant resistance mechanisms under lead stress. Chinese Journal of Ecology. 24 (12), 1507, 2005.
  • 34. Zhang J. Studies on leaf yellowing disease for Huanghua pear plants on saline-alkaline soil. Soil and Fertilizer Sciences in China. (4), 50-53, 2011.
  • 35. Lin F., Cong X., Huang J., Chen Q. Resistance of artificial wetland plants to lead. Chinese Journal of Environmental Engineering. 8 (6), 2329, 2014.
  • 36. Jiang X., Wen C., Cao S., Cheng G. Research progress on the phytoremediation of water bodies contaminated by heavy metals. Applied Chemical Industry. 45 (10), 1982, 2016.
  • 37. Duan D., Yu M., Shi J. Research advances in uptake, translocation, accumulation and detoxification of Pb in plants. The journal of applied ecology. 25 (1), 287, 2014.
  • 38. Tian S., Lu L., Yang X., Huang H., Brown P., Labavitch J., Liao H., He Z. The impact of EDTA on lead distribution and speciation in the accumulator Sedum alfredii by synchrotron X-ray investigation. Environmental Pollution. 159 (3), 782, 2011.
  • 39. Anning A.K., Akoto R. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety. 148, 97, 2018.
  • 40. Jeelani N., Yang W., Xu L., Qiao Y., An S., Leng X. Phytoremediation potential of Acorus calamus in soils cocontaminated with cadmium and polycyclic aromatic hydrocarbons. Scientific Reports. 7 (1), 8028, 2017.
  • 41. Hesami R., Salimi A., Ghaderian S.M. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environmental Science and Pollution Research. 25 (9), 8701, 2018.
  • 42. Huang G.Y., Wang Y.S. Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. Journal of Hazardous Materials. 182 (1-3), 848, 2010.
  • 43. Wu L.H., Luo Y.M., Xing X.R., Christie P. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems & Environment. 102, 307, 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-349fbdc1-1da5-4215-8357-7cca62848ff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.