PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 1 |

Tytuł artykułu

EEG correlates of cognitive load in a multiple choice reaction task

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study aimed to examine EEG correlates of cognitive load in a task, in which multiple stimulus‑response mappings have to be maintained in working memory (WM) combined with selective inhibition of irrelevant stimulus‑response mappings on every trial. Twenty‑four healthy younger adults had to perform choice reaction tasks differed in the number of S‑R mappings and motor response requirements. Performance was lower in the high load than in the low load condition. Performance decline at higher WM loads was accompanied by an increase of EEG power in delta, theta, and beta frequency bands and by a reduction in alpha band. The effect on alpha was generalized across all the electrodes. Correlations between EEG and performance were observed in the high load condition but not in the low load condition. Theta activity negatively correlated with reaction time, whereas positive correlations between beta activity and reaction time were found. The two frequency bands negatively correlated with each other at all electrodes. The results suggest that changes in alpha and theta power may be considered as the most sensitive indicators of cognitive load. The alpha reduction may be related to activation of widespread cortical areas which were recruited for performance of complex WM tasks. The beta increase, especially in the beta‑2 range, may partly be associated with activation of motor cortex due to difficulties in preparation and execution of motor responses. Theta increases may be considered as an index of facilitation of information processing in WM and improvements in higher‑order executive control, which in turn facilitates motor processes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

1

Opis fizyczny

p.76-89,fig.,ref.

Twórcy

  • Otto von Guericke University, Magdeburg, Germany
autor
  • Otto von Guericke University, Magdeburg, Germany
autor
  • Otto von Guericke University, Magdeburg, Germany
  • Otto von Guericke University, Magdeburg, Germany

Bibliografia

  • Baddeley A (1992) Working memory. Science 255: 556–559.
  • Barwick F, Arnett P, Slobounov S (2012) EEG correlates of fatigue during administration of a neuropsychological test battery. Clin Neurophysiol 123: 278–284.
  • Borella E, Carretti B, De Beni R (2008) Working memory and inhibition across the adult lifespan. Acta Psychol 128: 33–44.
  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14: 377–381.
  • Cola M, Magnuski M, Szumska I, Wróbel A (2013) EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. Int J Psychophysiol 89: 334–341.
  • Cowan N, Rouder JN, Blume CL, Saults JS (2012) Models of verbal working memory capacity: what does it take to make them work? Psychol Rev 119: 480–499.
  • Deiber MP, Missonnier P, Bertrand O, Gold G, Fazio‑Costa  L, Ibanez  V, Giannakopoulos P (2007) Distinction between perceptual and attentional processing in working memory tasks: a  study of phase‑locked and induced oscillatory brain dynamics. J Cog Neurosci 19: 158–172.
  • Dimitriadis SI, Laskaris NA, Tsirka  V, Vourkas  M, Micheloyannis S (2010) What does delta band tell us about cognitive processes: a mental calculation study. Neurosci Let 483: 11–15.
  • Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Cog Brain Res 20: 376–383. Fernández T, Harmony T, Gersenowies J, Silva‑Pereyra J, Fernández-Bouzas A, Galán,  L, Díaz‑Comas  L (2002) Sources of EEG activity during a  verbal working memory task in adults and children. Clin Neurophysiol Suppl 54: 269–283.
  • Freunberger R, Höller Y, Griesmayr B, Gruber W, Sauseng P, Klimesch W (2008) Functional similarities between the P1 component and alpha oscillations. Eur J of Neurosci 27: 2330–2340.
  • Gajewski PD, Falkenstein M (2014) Age‑related effects on ERP and oscillatory EEG dynamics in a 2‑back task. J Psychophysiol 28: 162–177.
  • Gärtner M, Rohde‑Liebenau L, Grimm S, Bajbouj M (2014) Working memoryrelated frontal theta activity is decreased under acute stress. Psycho‑ neuroendocrinol 43: 105–113.
  • Gevins A, Smith ME, McEvoy L, Yu D (1997) High‑resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7: 374–385.
  • Gevins A, Smith ME (2000) Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex 10: 829–839.
  • Gratton G, Coles MG, Donchin E (1983) A new method for off‑line removal of ocular artifact. Electroenceph Clin Neurophysiol 55: 468–484.
  • Gundel A, Wilson GF (1992) Topographical changes in the ongoing EEG related to the difficulty of mental tasks. Brain Topogr 5: 17–25.
  • Haegens S, Osipova D, Oostenveld R, Jensen O (2010) Somatosensory working memory performance in humans depends on both engage‑ ment and disengagement of regions in a  distributed network. Hum Brain Map 31: 26–35.
  • Harmony T, Alba A, Marroquín JL, González‑Frankenberger B (2009) Time‑frequency‑topographic analysis of induced power and synchrony of EEG signals during a Go/No‑Go task. Int J Psychophysiol 71: 9–16.
  • Herrmann CS, Senkowski D, Röttger S (2004) Phase‑locking and amplitude modulations of EEG alpha: two measures reflect different cognitive processes in a working memory task. Exp Psychol 51: 311–318.
  • Hoedlmoser K, Griessenberger H, Fellinger R, Freunberger R, Klimesch W, Gruber  W, Schabus  M (2011) Event‑related activity and phase locking during a psychomotor vigilance task over the course of sleep depriva‑ tion. J Sleep Res 20: 377–385.
  • Itthipuripat S, Wessel JR, Aron AR (2013) Frontal theta is a signature of suc‑ cessful working memory manipulation. Exp Brain Res 224: 255–262.
  • Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the al‑ pha band (9–12  Hz) increase with memory load during retention in a short‑term memory task. Cereb Cortex 12: 877–882.
  • Johnson JS, Sutterer DW, Acheson DJ, Lewis‑Peacock JA, Postle BR (2011) Increased alpha‑band power during the retention of shapes and shape‑location associations in visual short‑term memory. Front Psy‑ chol 2: 128.
  • Kahana MJ, Seelig D, Madsen JR (2001) Theta returns. Curr Opin Neurobiol 11: 739–744. Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, Koch I (2010) Control and interference in task switching: A review. Psychol Bull 136: 849–874.
  • Kirchner WK (1958) Age differences in short‑term retention of rapidly changing information. J Exp Psychol 55: 352–358.
  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29: 169–195.
  • Knyazev GG (2012) EEG delta oscillations as a correlate of basic homeo‑ static and motivational processes. Neurosci Biobehav Rev 36: 677–695.
  • Koelewijn T, van Schie HT, Bekkering H, Oostenveld R, Jensen O (2008) Mo‑ tor‑cortical beta oscillations are modulated by correctness of observed action. Neuroimage 40: 767–775.
  • Kuo CC, Luu P, Morgan KK, Dow M, Davey C, Song J, Malony AD, Tucker DM (2014) Localizing movement‑related primary sensorimotor cortices with multi‑band EEG frequency changes and functional MRI. PLoS ONE 9: e112103.
  • Lal SK, Craig A (2002) Driver fatigue: electroencephalography and psycho‑ logical assessment. Psychophysiol 39: 313–321.
  • Lorist MM (2008) Impact of top‑down control during mental fatigue. Brain Res 1232: 113–123.
  • Makeig S, Bell AJ, Jung TP, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. Adv Neural Inf Process Sys 145–151.
  • McEvoy LK, Pellouchoud E, Smith ME, Gevins A (2001) Neurophysiological signals of working memory in normal aging. Cog Brain Res 11: 363–376.
  • Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G (2009) Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain‑computer interface. Clin Neurophysiol 120: 239–247.
  • Nicholls ME, Thomas NA, Loetscher T, Grimshaw GM (2013) The Flinders Handedness survey (FLANDERS): a brief measure of skilled hand preference. Cortex 49: 2914–2926.
  • Ozdemir RA, Contreras‑Vidal JL, Lee BC, Paloski WH (2016) Cortical activity modulations underlying age‑related performance differences during posture–cognition dual tasking. Exp Brain Res 234: 3321–3334.
  • Pfurtscheller G, Da Silva FL (1999) Event‑related EEG/MEG synchroniza‑ tion and desynchronization: basic principles. Clin Neurophysiol 110: 1842–1857.
  • Raichle ME, Fiez JA, Videen TO, MacLeod AMK, Pardo JV, Fox PT, Petersen SE (1994) Practice‑related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4: 8–26.
  • Ridderinkhof KR, Van Den Wildenberg WP, Segalowitz SJ, Carter CS (2004) Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward‑based learning. Brain Cog 56: 129–140.
  • Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22: 2917–2926.
  • Sauseng P, Hoppe J, Klimesch W, Gerloff C, Hummel FC (2007) Dissocia‑ tion of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci 25: 587–593.
  • Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mecha‑ nisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34: 1015–1022.
  • Schapkin SA, Gajewski PD, Freude G (2014) Age differences in memory‑based task switching with and without cues. J Psychophysiol 28: 187–201.
  • Schuhfried G (2013) Wiener Test System. User Manual. Schuhfried GmbH, Mödling. Smith ME, McEvoy LK, Gevins A (1999) Neurophysiological indices of strategy development and skill acquisition. Cognitive Brain Research 7: 389–404.
  • Sternberg S (1966) High‑speed scanning in human memory. Science 153: 652–654.
  • Wascher E, Rasch B, Sänger J, Hoffmann S, Schneider D, Rinkenauer G, Gutberlet I (2014) Frontal theta activity reflects distinct aspects of men‑ tal fatigue. Biol Psych 96: 57–65.
  • Vogel EK, Machizawa MG (2004) Neural activity predicts individual differ‑ ences in visual working memory capacity. Nature 428: 748–751.
  • Yordanova J, Kolev  V, Hohnsbein J, Falkenstein  M (2004) Sensorimotor slowing with ageing is mediated by a functional dysregulation of mo‑ tor‑generation processes: evidence from high‑resolution event‑related potentials. Brain 127: 351–362.
  • Zacks, RT, Hasher  L (1994) Directed ignoring: Inhibitory regulation of working memory. In: Inhibitory processes in attention, memory, and language (Dagenbach D, Carr TH Eds.) Academic Press, San Diego, pp. 241–264.
  • Zhao C, Zhao M, Liu J, Zheng C (2012) Electroencephalogram and electro‑ cardiograph assessment of mental fatigue in a driving simulator. Accid Anal Prev 45: 83–90.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3421021c-2774-401c-89d6-01896090f739
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.