PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 58 | 2 |

Tytuł artykułu

Forecasting potato white mold by assessment of ascospores in Iran fields

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Potato white mold caused by Sclerotinia sclerotiorum is an important plant disease occurring in many potato-producing areas throughout the world. In this study, a specific diagnostic method was used to detect and quantify S. sclerotiorum ascospores, and its forecasting ability was assessed in potato fields during flowering periods of 2011 to 2014 in Bahar County, Hamedan Province. Using GenEMBL database, a primer pair, HZSCREV and HZSCFOR, was designed and optimized for the pathogen. After testing the sensitivity of primers, DNA was extracted from samples of outdoor Burkard traps from potato fields. A linear association was observed between pathogen DNA and the number of ascospores using the quantitative PCR (qPCR) technique in the presence of SYBR dye. The qPCR could successfully detect DNA amounts representing two S. sclerotiorum ascospores and was not sensitive to a variety of tested fungi such as Botrytis cinerea, Alternaria brassicae, Fusarium solani. In contrast to the amount of rainfall, a direct relationship was found between ascospore numbers and the incidence of potato white mold from 2011 to 2014.

Wydawca

-

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.168-175,fig.,ref.

Twórcy

autor
  • Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
autor
  • Department of Plant Protection, College of Agriculture, Azad University of Tabriz, Iran
autor
  • College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

Bibliografia

  • Abawi G.S., Grogan R.G. 1979. Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69: 899–904.
  • Atallah Z.K., Johnson D.A. 2004. Development of Sclerotinia stem rot in potato fields in south-central Washington. Plant Disease 88 (4): 419–423. DOI: https://doi.org/10.1094/pdis.2004.88.4.419
  • Boland G.J., Hall R. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 16 (2): 93–100. DOI: https://doi.org/10.1080/07060669409500766
  • Chilvers M.I., du Toit L.J., Akamatsu H., Peever T.L. 2007. A real-time, quantitative PCR seed assay for Botrytis spp. that cause neck rot of onion. Plant Disease 91 (5): 599–608.DOI: https://doi.org/10.1094/pdis-91-5-0599
  • Clarkson J.P., Phelps K., Whipps J.A., Young C.S., Smith J.A., Watling M. 2007. Forecasting Sclerotinia disease on lettuce: a predictive model for carpogenic germination of Sclerotinia sclerotiorum sclerotia. Phytopathology 97 (5): 621–31. DOI:https://doi.org/10.1094/PHYTO-97-5-0621
  • Fraaije B.A., Cools H.J., Fountaine J., Lovell D.J., Motteram J., West J.S., Lucas J.A. 2005. Role of ascospores in further spread of qoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola. Phytopathology 95 (8): 933–941. DOI: https://doi.org/10.1094/phyto-95-0933
  • Fraaije B.A., Lovell D.J., Coelho J.M., Baldwin S., Hollomon D.W. 2001. PCR-based assays to assess wheat varietal resistance blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondita) diseases. European Journal of Plant Pathology 107 (9): 905–917. DOI:https://doi.org/10.1023/A:1013119206261
  • Freeman J., Ward E., Calderon C., McCartney H.A. 2002. A polymerase chain reaction (PCR) assay for the detection of inoculum of Sclerotinia sclerotiorum. European Journal of Plant Pathology 108 (9): 877–886. DOI: https://doi.org/10.1023/A:1021216720024
  • Koch S., Dunker S., Kleinhenz B., Rohrig M., von Tiedemann A. 2007. Crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopathology 97 (9): 1186–1194. DOI: https://doi.org/10.1094/PHYTO-97-9-1186
  • Kowalska B., Smolińska U., Szczech M., Winciorek J. 2017. Application of organic waste material overgrown with Trichoderma atroviride as a control strategy for Sclerotinia sclerotiorum and Chalara thielavioides in soil. Journal of Plant Protection Research 57 (3): 205–211. DOI: https://doi.org/10.1515/jppr-2017-0027 cey M.E., West J.S. 2006. The Air Spora. 1st ed. Dordrecht, the Netherlands: Springer, 156 pp. DOI: https://doi.org/10.1007/978-0-387-30253-9
  • Larsen H.H., Huang L., Kovacs J.A., Crothers K., Silcott V.A., Morris A., Turner J.R., Beard Ch.B., Masur H., Fischer S.H. 2004. A prospective, blinded study of quantitative touch-down polymerase chain reaction using oral-wash samples for diagnosis of Pneumocystis pneumonia in HIVinfected patients. The Journal of Infectious Diseases 189 (9): 1679–1683. DOI: https://doi.org/10.1086/383322
  • Lievens B., Brouwer M., Vanachter A.C.R.C., Cammue B.P.A., Thomma B.P.H.J. 2006. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Science 171 (1): 155–165. DOI:https://doi.org/10.1016/j.plantsci.2006.03.009
  • McCartney H.A., Lacey M.E., Li Q., Heran A. 1999. Airborne ascospore concentration and the infection of oilseed rape and sunflowers by Sclerotinia sclerotiorum. The Regional Institute Online Publishing.
  • Nordin K., Sigvald R., Svensson C. 1992. Forecasting the incidence of Sclerotinia stem rot on spring-sown rapeseed. Journal of Plant Diseases and Protection 99 (3): 245–255.
  • Ojaghian M.R. 2009. First report of Sclerotinia sclerotiorum on potato plants in Iran. Australasian Plant Disease Notes 4 (1): 39–41. DOI: https://doi.org/10.1071/DN09016
  • Ojaghian M.R. 2010. Biocontrol of potato white mold using Coniothyrium minitans and resistance to Sclerotinia sclerotiorum. Plant Pathology Journal 26 (4): 346–352. DOI: https://doi.org/10.5423/ppj.2010.26.4.346
  • Ojaghian M.R. 2011. Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica 39 (2): 185–193.DOI: https://doi.org/10.1007/s12600-011-0153-9
  • Ojaghian M.R., Heng J., Xie G.–L., Cui Z.-Q., Zhang J., Li B. 2012a. In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum. The Plant Pathology Journal 28 (2): 185–190. DOI: https://doi.org/10.5423/ppj.2012.28.2.185
  • Ojaghian M.R., Cui Z.-Q., Xie G.-L., Li B., Zhang J. 2012b. Brassica green manure rotation crops reduce potato stem rot caused by Sclerotinia sclerotium. Australasian Plant Pathology 41 (4): 347–349. DOI: https://doi.org/10.1007/s13313-012-0142-6
  • Ojaghian M.R., Xie G.-L. 2012c. Identifying mycelial compatibility groups of Sclerotinia sclerotiorum using potato dextrose agar amended with activated charcoal. Journal of Plant Protection Research 52 (1): 77–82. DOI: https://doi.org/10.2478/v10045-012-0013-8
  • Ojaghian M.R., Almoneafy A.A., Cui Z.Q., Xie G.–L., Zhang J.–Z., Shang C., Li B. 2013. Application of acetyl salicylic acid and chemically different chitosans against storage carrot rot. Postharvest Biology and Technology 84: 51–60. DOI: https://doi.org/10.1016/j.postharvbio.2013.04.006
  • Ojaghian M.R., Wang L., Cui Z.-Q., Yang C., Zhongyun T., Xie G.-L. 2014a. Antifungal and SAR potential of crude extracts derived from neem and ginger against storage carrot rot caused by Sclerotinia sclerotiorum. Industrial Crops and Products 55: 130–139. DOI: https://doi.org/10.1016/j.indcrop.2014.02.012
  • Ojaghian M.R., Chen Y., Chen S., Cui Z-Q., Xie G-L, Zhang J-Z. 2014b. Antifungal and enzymatic evaluation of plant crude extracts derived from cinnamon and rosemary against Sclerotinia carrot rot. Annals of Applied Biology 164 (3): 415–429. DOI: https://doi.org/10.1111/aab.12111
  • Ojaghian M.R., Sun X., Zhang L., Li X., Xie G.-L., Zhang J., Wang L. 2015. Effect of E-cinnamaldehyde against Sclerotinia sclerotiorum on potato and induction of glutathione S-transferase genes. Physiological and Molecular Plant Pathology 91: 66–71. DOI: https://doi.org/10.1016/j.pmpp.2015.06.002
  • Ojaghian M.R., Wang Q., Li X., Sun X., Xie G.-L., Zhang J.-Z., Fan H.-W., Wang L. 2016. Inhibitory effect and enzymatic analysis of E-cinnamaldehyde against sclerotinia carrot rot. Pesticide Biochemistry and Physiology 127: 8–14. DOI:https://doi.org/10.1016/j.pestbp.2015.08.005
  • Ojaghian M.R., Zhang J.-Z., Xie G.-L., Wang Q., Li X.-L., Guo D.-P. 2017. Efficacy of UV-C radiation in inducing systemic acquired resistance against storage carrot rot caused by Sclerotinia sclerotiorum. Postharvest Biology and Technology 130: 94–102. DOI: https://doi.org/10.1016/j.postharvbio.2017.04.009
  • Partyka R.E., Mai W.F. 1961. Effects of environment and some chemicals on Sclerotinia sclerotiorum in laboratory and potato field. Phytopathology 52: 766–770.
  • Rogers S.L., Atkins S.D., West J.S. 2009. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR. Plant Pathology 58 (2): 324–331. DOI: https://doi.org/10.1111/j.1365-3059.2008.01945.x
  • Turkington T.K., Morrall R.A.A. 1993. Use of petal infestation to forecast Sclerotinia stem rot of canola – the influence of inoculum variation over the flowing period and canopy density. Phytopathology 83 (6): 682–689. DOI: https://doi.org/10.1094/phyto-83-682
  • Turkington T.K., Morrall R.A.A., Gugel R.K. 1991a. Use of petal infestation to forecast Sclerotinia stem rot of canola evaluation of early bloom sampling. Canadian Journal of Plant Pathology 13 (1): 50–9. DOI: https://doi.org/10.1080/07060669109500965
  • Turkington T.K., Morrall R.A.A., Rude S.V. 1991b. Use of petal infestation to forecast Sclerotinia stem rot of canola – the impact of diurnal and weather-related inoculum fluctuations. Canadian Journal of Plant Pathology 13 (4): 347–355. DOI:https://doi.org/10.1080/07060669109500920
  • Twengstrom E., Sigvald R., Svensson C., Yuen J. 1998. Forecasting Sclerotinia stem rot in spring sown oilseed rape. Crop Protection 17 (5): 405–411. DOI: https://doi.org/10.1016/s0261-2194(98)00035-0
  • West J.S., Fraaije B.A., Motteram J., Rogers S.L., Lacey M.E., Lucas J.A. 2006. Integration of molecular diagnostics and air sampling to study plant pathogens. In: Proceedings of the 8th International Congress on Aerobiology. Neuchâtel, Switzerland, 21–25 August 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-32ff6686-b2d2-4fa2-a630-10444c0e21d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.