PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 66 |

Tytuł artykułu

Is preformation of future shoots in Fagus sylvatica L. buds reflected in bud/sprouted shoot traits relationships?

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study was aimed to find out whether the preformation of future shoot’s organs within a bud is reflected in the bud size/shoot functional traits’ size relationships. The survey attempts to evaluate whether relationships between the bud mass and stem mass, leaf mass, leaf area, total mass and number of leaves, respectively, of spring-shoot sprouted by the bud in Fagus sylvatica (L.) saplings are affected by parental bud location within shoot and parental shoot type. Dry mass of the terminal bud, the first and the last lateral buds placed on terminal and uppermost lateral shoots was estimated nondestructively for 58 beech saplings in December 2008. The shoots sprouted from the measured buds were sampled at the end of growing season, in August 2009. Bud mass, parental shoot type and bud location explained about 90% of shoot traits variability in full-factorial ANOVA. The leaf mass was the only shoot trait not affected by parental shoot type and bud location within shoot in scaling relationship with bud mass. There was not found differences among intercepts across parental shoot types and bud locations, however significant shift along common slope was observed among them. The presented findings could be viewed as a confirmation of the preformation and full development of leaf primordia within the European beech buds prior to bud burst.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

66

Opis fizyczny

p.25-31,fig.,ref.

Twórcy

autor
  • Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, SK-960 53 Zvolen, Slovakia

Bibliografia

  • Barthélémy D., Caraglio Y. 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany 99: 357–407.
  • Bell A.D., Bryan A. 2008. Plant form. Timber Press, London, Portland, 431 pp.
  • Canham C.D. 1988. Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69: 786–795.
  • Cicák A. 2003. Estimation of morphological parameters for European beech leaves on spring shoots using the method of calculation coefficients. Folia Oecologica 30: 131–140.
  • Cicák A. 2008. Stanovenia suchej hmotnosti listov jarných výhonkov buka lesného metódou prepoctových koeficientov. E-ekológia lesa 6: 9 pp. http:// http://www.savzv.sk/e-ekologia-lesa/ (accessed 15.7.2009).
  • Cochard H., Coste S., Chanson B., Guehl J.M., Nicolini E. 2005. Hydraulic architecture correlates with bud organogenesis and primary shoot growth in beech (Fagus sylvatica). Tree Physiology 25: 1545–1552.
  • Doncaster C.P., Davey A.J.H. 2007. Analysis of variance and covariance. How to choose and construct models for the life sciences. Cambridge University Press, Cambridge, 288 pp.
  • Eschrich W., Burchardt R., Essiamah S. 1989. The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies. Trees 3: 1–10.
  • Evert R.F. 2006. Esau’s plant anatomy. Meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley & Sons, Hoboken, New Jersey, 573 pp.
  • Falster D.S., Warton D.I., Wright I.J. 2006. SMATR: Standardisedmajor axis tests and routines, ver 2.0. http://www.bio.mq.edu.au/ecology/SMATR/. (Accessed on 15 October 2010).
  • Goulet J., Messier C., Nikinmaa E. 2000. Effect of branch position and light availability on shoot growth of understory sugar maple and yellow birch saplings. Canadian Journal of Botany 78: 1077–1085.
  • Jarcuška B. 2010. Allometry of winter buds in beech (Fagus sylvatica L.) natural regeneration with respect to its volume and dry weight estimation. Folia Oecologica 37: 42–50.
  • Jarcuška B. 2011. Morphological plasticity of leaves in natural regeneration of Fagus sylvatica: effects of direct and diffuse light, ontogeny and shoot type. Polish Journal of Ecology 59: 339–353.
  • Jarcuška B., Barna M. 2011. Influence of light availability on height growth of naturally regenerated beech with different growth histories. Austrian Journal of Forest Science 128: 53–65.
  • Lambers H., Chapin F.S.III, Pons T.J. 2008. Plant physiological ecology. Springer, New York, 587 pp.
  • Masarovicová E. 1988. Comparative study of growth and carbon uptake in Fagus sylvatica L. trees growing under different light conditions. Biologia Plantarum 30: 285–293.
  • Miklós L., Maráky P., Klinda J. et al. 2002. Landscape atlas of the Slovak Republic. Ministry of Environment of the Slovak Republic, Bratislava; Slovak Environmental Agency, Banská Bystrica, 344 pp.
  • Milla R., Reich P.B., Niinemets Ü., Castro-Díez P. 2008. Environmental and developmental controls on specific leaf area are little modified by leaf allometry. Functional Ecology 22: 565–576.
  • Reynolds P.E., Frochot H. 2003. Photosynthetic acclimation of beech seedlings to full sunlight following a major windstorm event in France. Annals of Forest Science 60: 701–709.
  • Roloff A. 1987. Morphologie der Kronenentwicklung von Fagus silvatica L. (Rotbuche) unter besonderer Berücksichtigung neuartiger Veränderungen I. Morphogenetischen Zyklus, Anomalien infolge Prolepsis und Blattfall. Flora 179: 355–378.
  • Sokal R.R., Rohlf F.J. 1995. Biometry: the principles and practice of statistics in biological research. Freeman, New York, 887 pp.
  • Soper D.S. 2011. The free statistics calculators website. Online software. http://www.danielsoper.com/statcalc/ (Accessed on 31 March 2011).
  • Suzuki A.A., Suzuki M. 2009. Why do lower order branches show greater shoot growth than higher order branches? Considering space availability as a factor affecting shoot growth. Trees 23: 69–77.
  • Thiébaut B., Payri C., Vigneron P., Puech S. 1981. Observations sur la croissance et la floraison du hetre. Naturalia Monspeliaca, Ser. Botanica 48: 1–25.
  • Valladares F. 2003. Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. Progress in Botany 64: 439–471.
  • Warton D.I., Weber N.C. 2002. Common slope tests for bivariate errors-in-variables models. Biometrical Journal 44: 161–174.
  • Warton D.I., Wright I.J., Falster D.S., Westoby M. 2006. Bivariate line-fitting methods for allometry. Biological Reviews 81: 259–291.
  • Yagi T. 2006. Relationships between shoot size and branching patterns in 10 broad-leaved tall tree species in a Japanese cool-temperate forest. Canadian Journal of Botany 84: 1894–1907.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-32c8f88e-2102-4f8e-bdb5-6181b9e918ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.