PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 60 | 2 |

Tytuł artykułu

Detection of selective antibacterial peptides by the polarity profile method

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
 Antimicrobial peptides occupy a prominent place in the production of pharmaceuticals, because of their effective contribution to the protection of the immune system against almost all types of pathogens. These peptides are thoroughly studied by computational methods designed to shed light on their main functions. In this paper, we propose a computational approach, named the Polarity Profile method that represents an improvement to the former Polarity Index method. The Polarity Profile method is very effective in detecting the subgroup of antibacterial peptides called selective cationic amphipathic antibacterial peptides (SCAAP) that show high toxicity towards bacterial membranes and exhibit almost zero toxicity towards mammalian cells. Our study was restricted to the peptides listed in the antimicrobial peptides database (APD2) of December 19, 2012. Performance of the Polarity Profile method is demonstrated through a comparison to the former Polarity Index method by using the same sets of peptides. The efficiency of the Polarity Profile method exceeds 85% taking into account the false positive and/or false negative peptides.

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.183-189,ref.

Twórcy

autor
  • Facultad de Ciencias de la Salud, Universidad Anahuac, Huixquilucan Estado de Mexico, Mexico
  • Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
autor
  • Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
  • Facultad de Ciencias de la Salud, Universidad Anahuac, Huixquilucan Estado de Mexico, Mexico
  • Facultad de Ciencias de la Salud, Universidad Anahuac, Huixquilucan Estado de Mexico, Mexico

Bibliografia

  • Anderson RC (2005) Antimicrobial peptides isolate from ovine blood neutrophils, thesis, Massey University, Palmerston, North New Zealand.
  • Anderson RC, Yu PL (2003) Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochem Biophys Res Commun 312: 1139-1146. 
  • Australian Naturophathic Network ( http://www.ann.com.au/medsci/amino.htm) accesed in December, 2012.
  • Bagella L, Scocchi M, Zanetti M (1995) cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett 376: 225-228. 
  • Barie PS (2012) Multidrug-resistant organisms and antibiotic management. Surg Clin North Am 92: 345-391. 
  • Basir YJ, Knoop FC, Dulka J, Conlon JM (2000) Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim Biophys Acta 1543: 95-105. 
  • Blueggel M, Chamrad D, Meyer HE (2004) Bioinformatics in proteomics. Curr Pharm Biotechnol 5: 79-88. 
  • Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P (2002) Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei infections. Insect Biochem Mol Biol 32: 369-375. 
  • Cerovský V, Slaninová J, Fucík V, Hulacová H, Borovicková L, Jezek R, Bednárová L (2008) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29: 992-1003. 
  • Cintas LM, Casaus P, Herranz C, Hâvarstein LS, Holo H, Hernández PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182: 6806-6814. 
  • Cole AM, Weis P, Diamond G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272: 12008-12013. 
  • Conceição K, Konno K, Richardson M, Antoniazzi MM, Jared C, Daffre S, Camargo AC, Pimenta DC (2006) Isolation and biochemical characterization of peptides presenting antimicrobial activity from the skin of Phyllomedusa hypochondrialis. Peptides 27: 3092-309. 
  • Conlon JM, Kolodziejek J, Nowotny N, Leprince J, Vaudry H, Coquet L, Jouenne T, King JD (2008) Characterization of antimicrobial peptides from the skin secretions of the Malaysian frogs, Odorrana hosii and Hylarana picturata (Anura:Ranidae). Toxicon 52: 465-473. 
  • Conlon JM, Mechkarska M, Ahmed E, Coquet L, Jouenne T, Leprince J, Vaudry H, Hayes MP, Padgett-Flohr G (2011) Host defense peptides in skin secretions of the Oregon spotted frog Rana pretiosa: implications for species resistance to chytridiomycosis. Dev Comp Immunol 35: 644-649. 
  • Davies J, Shaffer B, Littlewood W (1979) Elementary Biochemistry - An Introduction to the Chemistry of Living Cells. Prentice Hall, Upper Saddle River, NJ, USA.
  • del Rio G, Castro-Obregon S, Rao R, Ellerby HM, Bredesen DE (2001) APAP, a sequence-pattern recognition approach identifies substance P as a potential apoptotic peptide. FEBS Lett 494: 213-219. 
  • Galinier R, Roger E, Sautiere PE, Aumelas A, Banaigs B, Mitta G (2009) Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. J Pept Sci 15: 48-55. 
  • Gonzalez-Diaz H (2012) Editorial: QSAR/QSPR models as enabling technologies for drug & targets discovery in: medicinal chemistry, microbiology-parasitology, neurosciences, bioinformatics, proteomics and other biomedical sciences. Curr Top Med Chem 12: 799- 801. 
  • Goraya J, Knoop FC, Conlon JM (1998) Ranatuerins: antimicrobial peptides isolated from the skin of the American bullfrog, Rana catesbeiana. Biochem Biophys Res Commun 250: 589-592. 
  • Goraya J, Wang Y, Li Z, O'Flaherty M, Knoop FC, Platz JE, Conlon JM (2000) Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem 267: 894-900. 
  • Han M, Dai J, Zhang Y, Lin Q, Jiang M, Xu X, Liu Q, Jia J (2012) Support vector machines coupled with proteomics approaches for detecting biomarkers predicting chemotherapy resistance in small cell lung cancer. Oncol Rep 28: 2233-2238. 
  • Iwakoshi-Ukena E, Okada G, Okimoto A, Fujii T, Sumida M, Ukena K (2011) Identification and structure-activity relationship of an antimicrobial peptide of the palustrin-2 family isolated from the skin of the endangered frog Odorrana ishikawae. Peptides 32: 2052-2057. 
  • Jackway RJ, Bowie JH, Bilusich D, Musgrave IF, Surinya-Johnson KH, Tyler MJ, Eichinger PC (2008) The fallaxidin peptides from the skin secretion of the Eastern Dwarf Tree Frog Litoria fallax. Sequence determination by positive and negative ion electrospray mass spectrometry: antimicrobial activity and cDNA cloning of the fallaxidins. Rapid Commun Mass Spectrom 22: 3207-3216. 
  • Janes KA, Lauffenburger DA (2006) A biological approach to computational models of proteomic networks. Curr Opin Chem Biol 10: 73-80. 
  • Jia HP, Wowk SA, Schutte BC, Lee SK, Vivado A, Tack BF, Bevins CL, McCray PB Jr (2000) A novel murine beta -defensin expressed in tongue, esophagus, and trachea. J Biol Chem 275: 33314-33320. 
  • Lee IH, Zhao C, Cho Y, Harwig SS, Cooper EL, Lehrer RI (1997) Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett 400: 158-162. 
  • Leite JR, Silva LP, Rodrigues MI, Prates MV, Brand GD, Lacava BM, Azevedo RB, Bocca AL, Albuquerque S, Bloch C Jr (2005) Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides 26: 565-573. 
  • Li J, Halgamuge SK, Tang SL (2008) Genome classification by gene distribution: an overlapping subspace clustering approach. BMC Evol Biol 8: 116. 
  • Maclean MJ, Brinkworth CS, Bilusich D, Bowie JH, Doyle JR, Llewellyn LE, Tyler MJ (2006) New caerin antibiotic peptides from the skin secretion of the Dainty Green Tree Frog Litoria gracilenta. Identification using positive and negative ion electrospray mass spectrometry. Toxicon 47: 664-675. 
  • Moore KS, Bevins CL, Brasseur MM, Tomassini N, Turner K, Eck H, Zasloff M (1991) Antimicrobial peptides in the stomach of Xenopus laevis. J Biol Chem 266: 19851-19857. 
  • Morishima I, Suginaka S, Ueno T, Hirano H (1990) Isolation and structure of cecropins, inducible antibacterial peptides, from the silkworm, Bombyx mori. Comp Biochem Physiol B 95: 551-554. 
  • Perez-Riverol Y, Vera R, Mazola Y, Musacchio A (2012) A parallel systematic-Monte Carlo algorithm for exploring conformational space. Curr Top Med Chem 12: 1790-1796. 
  • Polanco C, Samaniego JL (2009) Detection of selective cationic amphipatic antibacterial peptides by Hidden Markov models. Acta Biochim Pol 56: 167-176. 
  • Polanco C, Samaniego JL, Buhse T, Mosqueira FG, Negron-Mendoza A, Ramos-Bernal S, Castanon-Gonzalez JA (2012) Characterization of selective antibacterial peptides by polarity index. Int J Pept 585027 doi: 10.1155/2012/585027. 
  • Romeo D, Skerlavaj B, Bolognesi M, Gennaro R (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 263: 9573-9575. 
  • Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268: 6641-6648. 
  • Shamova O, Brogden KA, Zhao C, Nguyen T, Kokryakov VN, Lehrer RI (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun 67: 4106-4111. 
  • Silverman BD (2005) Underlying hydrophobic sequence periodicity of protein tertiary structure. J Biomol Struct Dyn 22: 411-423. 
  • Stone DJ, Waugh RJ, Bowie JH, Wallace JC, Tyler MJ (1993) Peptides from Australian frogs. Structures of the caeridins from Litoria caerulea. J Chem Soc Perkin Transactions 1 573-576.
  • Storici P, Tossi A, Lenarcic B, Romeo D (1996) Purification and structural characterization of bovine cathelicidins, precursors of antimicrobial peptides. Eur J Biochem 238: 769-776. 
  • Thompson AH, Bjourson AJ, Orr DF, Shaw C, McClean S (2007) A combined mass spectrometric and cDNA sequencing approach to the isolation and characterization of novel antimicrobial peptides from the skin secretions of Phyllomedusa hypochondrialis azurea. Peptides 28: 1331-1343. 
  • Vanhoye D, Bruston F, El Amri S, Ladram A, Amiche M, Nicolas P (2004) Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Biochemistry 43: 8391-8409. 
  • Wabnitz PA, Bowie JH, Tyler MJ, Wallace JC, Smith BP (2000) Differences in the skin peptides of the male and female Australian tree frog Litoria splendida. The discovery of the aquatic male sex pheromone splendipherin, together with phe8 caerulein and a new antibiotic peptide caerin 1.10. Eur J Biochem 267: 269-275. 
  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design Nucleic Acids Res 37: D933-D937. 
  • Wegener KL, Brinkworth CS, Bowie JH, Wallace JC, Tyler MJ (2001) Bioactive dahlein peptides from the skin secretions of the Australian aquatic frog Litoria dahlii: sequence determination by electrospray mass spectrometry. Rapid Commun Mass Spectrom 15: 1726-1734. 
  • Yoe SM, Kang CS, Han SS, Bang IS (2006) Characterization and cDNA cloning of hinnavin II, a cecropin family antibacterial peptide from the cabbage butterfly, Artogeia rapae. Comp Biochem Physiol B Biochem Mol Biol 144: 199-205. 
  • Yu PL, Choudhury SD, Ahrens K (2001) Purification and characterization of the antimicrobial peptide, ostricacin. Biotechnol Lett 23: 207-210.
  • Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, Pacor S, Crovella S, Tossi A (2006) Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J Biol Chem 281: 19861-19871. 
  • Zhao C, Liaw L, Lee IH, Lehrer RI (1997) cDNA cloning of Clavanins: antimicrobial peptides of tunicate hemocytes. FEBS Lett 410: 490-492. 
  • Zhao N, Pang B, Shyu CR, Korkin D (2011) Feature-based classification of native and non-native protein-protein interactions: Comparing supervised and semi-supervised learning approaches. Proteomics 11: 4321-4330. 

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-314350a6-5300-415e-b990-9bf16280e6fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.