PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 2 |

Tytuł artykułu

Effect of quercetin on bone mineral status and markers of bone turnover in retinoic acid-induced osteoporosis

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Retinoic acid-induced osteoporosis (RBM) is one of the most common causes of secondary osteoporosis. This study tested the anti-osteoporetic effect of quercetin in RBM-induced bone loss model (RBM). After 14-day supplementation of 13cRA to induce RBM, rats were administered with quercetin (100 mg/kg) or alendronate (40 mg/kg). We analysed changes in body and uterine weight of animals, femoral geometric characteristics, calcium and phosphorus content, bone weight index, bone hystology, bone mineral density (BMD), markers of bone turnover, lipid peroxidation, glutathione levels and SOD, CAT activity of liver, kidney spleen, and ovary as well as biochemical and haematological variables. In comparison to the control RBM rats, the treatment with quercetin increased bone weight index, BMD, osteocalcin level, femoral geometric characteristics, calcium and phosphorus content in the 13cRA-induced bone loss model. Histological results showed its protective action through promotion of bone formation. According to the results, quercetin could be an effective substitution for alendronate in 13cRA-induced osteoporosis. Good therapeutic potential of quercetin on rat skeletal system is based partly on its antioxidant capacity and estrogenic activity.

Wydawca

-

Rocznik

Tom

68

Numer

2

Opis fizyczny

p.149-162.fig.,ref.

Twórcy

autor
  • Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
autor
  • Department of Orthopaedic Surgery, Specialty Hospital St.Catherine, Zabok, Croatia
autor
  • Department of Surgery and Emergency Medicine, General Hospital Zabok, Croatia
autor
  • Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
  • Division of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
autor
  • Roche d.o.o., Zagreb, Croatia

Bibliografia

  • 1. Ali A.A., Effect of alendronate sodium (Fosamax) on bone of adult male Sprague dawley rats under glucocorticoids therapy histological and histochemical study. Egypt. J. Histol., 2006, 29, 1, 61–72.n
  • 2. Bitto A., Burnett B.P., Polito F., Levy R.M., Marini H., Di Stefano V., Irrera N., Armbruster M.A., Minutoli L., Altavilla D., Squadrito F., Genistein aglycone reverses glucocorticoid-induced osteoporosis and increases bone breaking strength in rats: a comparative study with alendronate. Br. J. Pharmacol., 2009, 156, 1287–1295.
  • 3. Chavassieux P.M., Arlot M.E., Reda C., Wei L., Yates A.J., Meunier P.J., Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J. Clin. Invest., 1997, 100, 1475–1480.
  • 4. Chiang C.H., Huang C.C., Chan W.L., Huang P.H., Chen T.J., Chung C.M., Lin S.J., Chen J.W., Leu H.B., Oral alendronate use and risk of cancer in postmenopausal women with osteoporosis: A nationwide study. J. Bone. Miner. Res., 2012, 27, 1951–1958.
  • 5. Conwell L.S., Chang A.B., Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database. Syst. Rev., 2012, doi: 10.1002/14651858.CD002010.pub3.
  • 6. Coskun O., Kanter M., Korkmaz A., Oter S., Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol. Res., 2005, 51, 117–123.
  • 7. Coxam V., Phyto-oestrogens and bone health. Proc. Nutr. Soc., 2008, 67, 184–95.
  • 8. Fahmy S.R., Soliman A.M., Oxidative stress as a risk factor of osteoporotic by vitamin A in rats. Aust. J. Basic. Appl. Sci., 2009, 3, 1559–1568.
  • 9. Henning P., Conaway H.H., Lerner U.H., Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne)., 2015, 6:31. doi: 10.3389/fendo.2015.00031. eCollection 2015.
  • 10. Hotchkiss C.E., Latendresse J., Ferguson S.A., Oral treatment with retinoic acid decreases bone mass in rats. Comp. Med., 2006, 56, 502–511.
  • 11. Hozayen W.G., El-Desouky M.A., Soliman H.A., Ahmed R.R., Khaliefa A.K., Antiosteoporotic effect of Petroselinum crispum, Ocimum basilicum and Cichorium intybus L. in glucocorticoidinduced osteoporosis in rats. BMC Complement Altern. Med., 2016, Jun 2; 16, 165, doi: 10.1186/s12906–016–1140-y.
  • 12. Huuskonen J., Arnala I., Olkkonen H., Alhava E., Alendronate infl uences bending force of femoral diaphysis after orchidectomy in rats. Ann. Chir. Gynaecol., 2001, 90, 109–114.
  • 13. Inoue J., Choi J.M., Yoshidomi T., Yashiro T., Sato R., Quercetin enhances VDR activity, leading to stimulation of its target gene expression in Caco-2 cells. Nutr. Sci. Vitaminol. (Tokyo)., 2010, 56, 326–330.
  • 14. Iwaniec U.T., Turner R.T., Smith B.J., Stoecker B.J., Rust A., Zhang B., Vasu V.T., Gohil K., Cross C.E., Traber M.G., Evaluation of long-term vitamin E insuffi ciency or excess on bone mass, density, and microarchitecture in rodents. Free. Radic. Biol. Med., 2013, 65, 1209–1214.
  • 15. Johansson S., Melhus H., Vitamin A antagonizes calcium response to vitamin D in man. J. Bone. Miner. Res., 2001, 16, 1899–1905.
  • 16. Johnell O., Kanis J.A., An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int., 2006, 17, 1726–1733.
  • 17. Kneissel M., Studer A., Cortesi R., Susa M., Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone, 2005, 36, 202–214.
  • 18. Knežević A.H., Dikić D., Lisičić D., Kopjar N., Oršolić N., Karabeg S., Benković V., Synergistic effects of irinotecan and fl avonoids on Ehrlich ascites tumour-bearing mice. Basic. Clin. Pharmacol. Toxicol., 2011, 109, 343–349.
  • 19. Liang W., Luo Z., Ge S., Du J., Yang M., Yan M., Ye Z., Luo Z., Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur. J. Pharmacol., 2011, 670, 317–324.
  • 20. Liu R.H., Kang X., Xu L.P., Nian H.L., Yang X.W., Shi H.T., Wang X.J., Effects of the combined extracts of Herba epimedii and Fructus ligustri Lucidi on bone mineral content and bone turnover in osteoporotic rats. BMC Complement Altern. Med., 2015 Apr 9, 15, 112, doi: 10.1186/s12906–015–0641–4.
  • 21. Mackinnon E.S., Rao A.V., Josse R.G., Rao L.G., Supplementation with the antioxidant lycopene signifi cantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos. Int., 2011, 22, 1091–1101.
  • 22. Manolagas S.C., Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev., 2009, 21, 115–137.
  • 23. Mukherjee M., Das A.S., Mitra S., Mitra C., Prevention of bone loss by oil extract of garlic (Allium sativum Linn.) in an ovariectomized rat model of osteoporosis. Phytother. Res., 2004, 18, 389–394.
  • 24. Muthusami S., Ramachandran I., Muthusami B., Vasudevan G., Prabhu V., Subramaniam V., Jagadeesan A., Narasimha S., Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clinica. Chimica. Acta, 2005, 360, 81–86.
  • 25. Nowak B., Matuszewska A., Filipiak J., Nikodem A., Merwid-Ląd A., Pieśniewska M., Kwiatkowska J., Grotthus B., Szeląg A.. The negative impact of selective activation of retinoic acid receptors on bone metabolism and bone mechanical properties in rats. Adv. Clin. Exp. Med., 2016, 25, 213–218.
  • 26. Oršolić N., Benković V., Lisičić D., Dikić D., Erhardt J., Knežević A.H., Protective effects of propolis and related polyphenolic/fl avonoid compounds against toxicity induced by irinotecan. Med. Oncol., 2010, 27, 1346–1358.
  • 27. Oršolić N., Car N., Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumour Biol., 2014, 35, 6445–6454.
  • 28. Oršolić N., Gajski G., Garaj-Vrhovac V., Dikić D., Prskalo Z.Š., Sirovina D., DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur. J. Pharmacol., 2011, 656, 110–118.
  • 29. Oršolić N., Goluža E., Đikić D., Lisičić D., Sašilo K., Rođak E., Jeleč Z., Lazarus M.V., Orct T., Role of fl avonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. Eur. J. Nutr., 2014, 53, 1217–1227.
  • 30. Oršolić N., Kunštić M., Kukolj M., Gračan R., Nemrava J., Oxidative stress, polarization of macrophages and tumour angiogenesis: Efficacy of caffeic acid. Chem. Biol. Interact., 2016, 256, 111–124.
  • 31. Peng X., Jianfeng Y., Weizhang J., Qiankun C., Xio G., The effect of osteoporotic model rats induced by retinoic acid. Chinese Int. J. Traumatol., 2005, 4, 1–6.
  • 32. Perazzella M.A., Markowitz G.S., Bisphosphonate nephrotoxicity. Kidney Int., 2008, 74, 1385–93.
  • 33. Pitts C.J., Kearns A.E., Update on medications with adverse skeletal effects. Mayo Clin. Proc., 2011, 86, 338–343.
  • 34. Prouillet C., Mazière J.C., Mazière C., Wattel A., Brazier M., Kamel S., Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem. Pharmacol., 2004, 67, 1307–1313.
  • 35. Rohde C.M., Manatt M., Clagett-Dame U., DeLuca H.F., Vitamin A antagonizes the action of vitamin D in rats. J. Nutr., 1999, 129, 2246–2250.
  • 36. Sheweita S.A., Khoshhal K.I., Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr. Drug. Metab., 2007, 8, 519–525.
  • 37. Togari A., Kondo M., Arai M., Matsumoto S., Effects of retinoic acid on bone formation and resorption in cultured mouse calvaria. Gen. Pharmacol., 1991, 22, 287–292.
  • 38. Tsuji M., Yamamoto H., Sato T., Mizuha Y., Kawai Y., Taketani Y., Kato S., Terao J., Inakuma T., Takeda E., Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J. Bone. Miner. Metab., 2009, 27, 673–681.
  • 39. Walker-Bone K., Recognizing and treating secondary osteoporosis. Nat. Rev. Rheumatol., 2012, 8, 480–492.
  • 40. Wattel A., Kamel S., Prouillet C., Petit J.P., Lorget F., Offord E., Brazier M., Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J. Cell Biochem., 2004, 92, 285–295.
  • 41. Wei M., Yang Z., Li P., Zhang Y., Sse W.C., Anti –osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model. Am. J. Chin. Med., 2007, 35, 663–667.
  • 42. Woo J.T., Nakagawa H., Notoya M., Yonezawa T., Udagawa N., Lee I.S., Ohnishi M., Hagiwara H., Nagai K., Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol. Pharm. Bull., 2004, 27, 504–509.
  • 43. Xu Y.X., Wu C.L., Wu Y., Tong P.J., Jin H.T., Yu N.Z., Xiao L.W., Epimedium-derived flavonoids modulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats via Wnt/β-catenin signal pathway activation. Chin. J. Integr. Med., 2012, 18, 909–917.
  • 44. Yang J., Wu N., Peng J., Yang X., Guo J., Yin S., Wang J., Prevention of retinoic acid-induced osteoporosis in mice by isoflavoneenriched soy protein. J Sci Food Agric., 2016, 96, 331–338.
  • 45. Zhao S., Niu .F, Xu C.Y., Liu Y., Ye L., Bi G.B., Chen L., Tian G., Nie T.H., Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Irish J. Med. Sci., 2016, 185, 581–587.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f8cab4f-b0c6-4ce6-96c5-cdc622a3c94a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.