PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 4 |

Tytuł artykułu

In vitro effects of prolonged exposure to quercetin and epigallocatechin gallate of the peripheral blood mononuclear cell membrane

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study aimed to assess biophysical changes that take place in the peripheral blood mononuclear cell (PBMC) membranes when exposed in vitro to 10 μM quercetin or epigallocatechin gallate (EGCG) for 24 and 48 h. PBMCs isolated from hypercholesterolemia patients were compared to those from normocholesterolemia subjects. The membrane fluidity and transmembrane potential were evaluated and the results were correlated with biochemical parameters relevant to oxidative stress, assessed in the patients’ plasma. The baseline value of PBMC membrane anisotropy for the hypercholesterolemia patients was lower than that of the control group. These results correlated with the plasma levels of advanced glycation end products, which were significantly higher in the hypercholesterolemia group, and the total plasma antioxidant status, which was significantly higher in normocholesterolemia subjects. In the case of normocholesterolemia cells in vitro, polyphenols induced a decrease in membrane anisotropy (7.25–11.88% at 24 h, 1.82–2.26% at 48 h) and a hyperpolarizing effect (8.30–8.90% at 24 h and 4.58–13.00% at 48 h). The same effect was induced in hypercholesterolemia cells, but only after 48 h exposure to the polyphenols: the decrease in membrane anisotropy was 5.70% for quercetin and 2.33% for EGCG. After 48 h of in vitro incubation with the polyphenols, PBMCs isolated from hypercholesterolemia patients exhibited the effects that had been registered in cells from normocholesterolemia subjects after 24 h exposure. These results outlined the beneficial action of the studied polyphenols, quercetin and EGCG, as dietary supplements in normocholesterolemia and hypercholesterolemia patients.

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.542-560,ref.

Twórcy

autor
  • Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St., 020956, Bucharest, Romania
autor
  • Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St., 020956, Bucharest, Romania
autor
  • Victor Babes National Institute of Pathology, Bucharest, 99-101 Splaiul Independentei, 050096, Bucharest, Romania
autor
  • Victor Babes National Institute of Pathology, Bucharest, 99-101 Splaiul Independentei, 050096, Bucharest, Romania
  • N.Paulescu National Institute for Diabetes, Nutrition and Metabolic Diseases, 5-7 Ion Movila St., 020475, Bucharest, Romania
autor
  • Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St., 020956, Bucharest, Romania
autor
  • Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St., 020956, Bucharest, Romania

Bibliografia

  • 1. Dykesa, L., Peterson, G.C., Rooney, W.L. and Rooney, L.W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chemistry 128 (2011) 173–179. DOI: 10.1016/j.foodchem.2011.03.020.
  • 2. Davies, K.M., Bloor, S.J., Spiller, G.B. and Deroles, S.C. Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. The Plant Journal 13 (1998) 259–266. DOI: 10.1046/j.1365-313X.1998. 00029.x.
  • 3. Procházková, D., Boušová, I. and Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82 (2011) 513–523. DOI: 10.1016/j.fitote.2011.01.018.
  • 4. Weber, J.M., Ruzindana-Umunyana, A., Imbeault, L. and Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antivir. Res. 58 (2003) 167–173. DOI:10.1016/S0166-3542(02)00212-7.
  • 5. Alvesalo, J., Vuorela, H., Tammela, P., Leinonen, M., Saikku, P. and Vuorela, P. Inhibitory effect of dietary phenolic compounds on Chlamydia pneumoniae in cell cultures. Biochem. Pharmacol. 71 (2006) 735–741. DOI:10.1016/j.bcp.2005.12.006.
  • 6. Widlansky, M.E., Duffy, S.J., Hamburg, N.M., Gokce, N., Warden, B.A., Wiseman, S., Keaney Jr., J.F., Frei, B. and Vita, J.A. Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Free Radic. Biol. Med. 38 (2005) 499–506. DOI: 10.1016/j.freeradbiomed.2004.11.013.
  • 7. Hubbard, G.P., Wolffram, S., Lovegrove, J.A. and Gibbins, J.M. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost. 2 (2004) 2138–2145. DOI: 10.1111/j.1538-7836.2004.01067.x.
  • 8. Kaliora, A.C., Dedoussis, G.V.Z. and Schmidt, H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 187 (2006) 1–17. DOI: 10.1016/j.atherosclerosis.2005.11.001.
  • 9. Ajdžanović, V.Z., Milošević, V.Lj. and Spasojević, I.B. Glucocorticoid excess and disturbed hemodynamics in advanced age: the extent to which soy isoflavones may be beneficial. Gen. Physiol. Biophys. 31 (2012) 367–374. DOI: 10.4149/gpb_2012_041.
  • 10. Ajdžanović, V.Z., Medigović, I.M., Pantelić, J.B. and Milošević, V.Lj. Soy isoflavones and cellular mechanics. J. Bioenerg. Biomembr. 46 (2014) 99– 107. DOI: 10.1007/s10863-013-9536-6.
  • 11. Chanet, A., Milenkovic, D., Manach, C., Mazur, A. and Morand, C. Citrus flavanones: what is their role in cardiovascular protection? J. Agric. Food Chem. 60 (2012) 8809–8822. DOI: 10.1021/jf300669s.
  • 12. Siasos, G., Tousoulis, D., Tsigkou, V., Kokkou, E., Oikonomou, E., Vavuranakis, M., Basdra, E.K., Papavassiliou, A.G. and Stefanadis, C. Flavonoids in atherosclerosis: an overview of their mechanisms of action. Curr. Med. Chem. 20 (2013) 2641–2660. DOI: 10.2174/ 0929867311320210003.
  • 13. Xiao, Q., Park, Y., Hollenbeck, A.R. and Kitahara, C.M. Dietary flavonoid intake and thyroid cancer risk in the NIH-AARP diet and health study. Cancer Epidemiol. Biomarkers Prev. 23 (2014). [Epub ahead of print] DOI: 10.1158/1055-9965.EPI-13-1150.
  • 14. Bhatti, S.K., O’Keefe, J.H. and Lavie, C.J. Coffee and tea: perks for health and longevity? Curr. Opin. Clin. Nutr. Metab. Care. 16 (2013) 688–697. DOI: 10.1097/MCO.0b013e328365b9a0.
  • 15. Fraga, C.G., Galleano, M., Verstraeten, S.V. and Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31 (2010) 435-445. DOI: 10.1016/j.mam.2010.09.006.
  • 16. Weng, C.J. and Yen, G.C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 38 (2012) 76–87. DOI:10.1016/j.ctrv.2011.03.001.
  • 17. Karewicza, A., Bielska, D., Gzyl-Malcher, B., Kepczynski, M., Lach, R. and Nowakowska, M. Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids Surf. B: Biointerfaces 88 (2011) 231–239. DOI: 10.1016/j.colsurfb.2011.06.037.
  • 18. Androutsopoulos, V.P., Papakyriakou, A., Vourloumis, D., Tsatsakis, A.M. and Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther. 126 (2010) 9–20. DOI:10.1016/j.pharmthera.2010.01.009.
  • 19. Margina, D., Ilie, M., Manda, G., Neagoe, I., Mocanu, M., Ionescu, D., Gradinaru, D. and Ganea, C. Quercetin and epigallocatechin gallate effects on the cell membranes biophysical properties correlate with their antioxidant potential. Gen. Physiol. Biophys. 31 (2012) 47–55. DOI: 10.4149/gpb_2012_005.
  • 20. Chen, R., Wang, J.B., Zhang, X.Q., Ren, J. and Zeng, C.M. Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. Arch. Biochem. Biophys. 507 (2011) 343–349. DOI: 10.1016/j.abb.2010.12.033.
  • 21. Ajdzanović, V., Spasojević, I., Filipović, B., Sosić-Jurjević, B., Sekulić, M. and Milosević, V. Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study. Can. J. Physiol. Pharmacol. 88 (2010) 497–500. DOI: 10.1139/y10-020.
  • 22. Kimura, Y., Hyogo, H., Yamagishi, S., Takeuchi, M., Ishitobi, T., Nabeshima, Y., Arihiro, K. and Chayama, K. Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J. Gastroenterol. 45 (2010) 750–757. DOI: 10.1007/s00535-010-0203-y.
  • 23. Stirban, A., Gawlowski, T. and Roden, M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol. Metab. 3 (2013) 94–108. DOI:10.1016/j.molmet.2013.11.006.
  • 24. Margina, D., Ilie, M. and Gradinaru, D. Quercetin and Epigallocatechin Gallate Induce in Vitro a Dose-Dependent Stiffening and Hyperpolarizing Effect on the Cell Membrane of Human Mononuclear Blood Cells. Int. J. Mol. Sci. 13 (2012) 4839–4859. DOI:10.3390/ijms13044839.
  • 25. Ionescu, D., Margina, D., Ilie, M., Iftime, A. and Ganea, C. Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol. Food Chem. Toxicol. 61 (2013) 94–100. DOI: 10.1016/ j.fct.2013.03.007.
  • 26. Llorente-Cortés, V., De Gonzalo-Calvo, D., Orbe, J., Páramo, J.A. and Badimon, L. Signature of subclinical femoral artery atherosclerosis in peripheral blood mononuclear cells. Eur. J. Clin. Invest. 44 (2014) 539–548. DOI: 10.1111/eci.12267.
  • 27. Rentoukas, E., Tsarouhas, K., Kaplanis, I., Korou, E., Nikolaou, M., Marathonitis, G., Kokkinou, S., Haliassos, A., Mamalaki, A., Kouretas, D. and Tsitsimpikou, C. Connection between telomerase activity in PBMC and markers of inflammation and endothelial dysfunction in patients with metabolic syndrome. PLoS One 7 (2012) e35739. DOI: 10.1371/journal. pone.0035739.
  • 28. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V. and Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond.) 84 (1993) 407–412.
  • 29. Randox Total Antioxidant Status (TAS) manual, http://www.veritastk.co.jp/attached/3556/NX2332manual.pdf, last accessed 14.06.2014.
  • 30. Pebay-Peyroula, E., Dufourc, E.J. and Szabo, A.G. Location of diphenylhexatriene and trimethylammonium-diphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction. Biophys. Chem. 53 (1994) 45–56.
  • 31. Ilie, M., Margina, D., Katona, E., Ganea, C., Pencea, C., Gradinaru, D., Mitrea, N. and Balalau, D. Quercetin and epigallocatechin gallate effect on the lipid order parameter of peripheral blood mononuclear cells from diabetes patients. Rom. Biotechnol. Lett. 14 (2009) 4804–4811.
  • 32. Lakowicz, J.R. Principles of fluorescence spectroscopy, 2-nd Edition, New York: Kluwer Academic/Plenum Press, 1999, 298–395.
  • 33. Epps, D.E., Wolfe, M.L. and Groppi, V. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3- dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) in model systems and cells. Chem. Phys. Lipids 69 (1994) 137–150.
  • 34. Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T. and Noguchi, N. A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474 (2000) 137–140.
  • 35. Sebeková, K., Podracká, L., Blazícek, P., Syrová, D., Heidland, A. and Schinzel, R. Plasma levels of advanced glycation end products in children with renal disease. Pediatr. Nephrol. 16 (2001) 1105–1112.
  • 36. Margina, D., Gradinaru, D., Panaite, C., Cimponeriu, D., Vladica, M., Danciulescu R. and Mitrea, N. The association of adipose tissue markers for redox imbalance and the cardio-vascular risk in obese patients. HealthMED 5 (2011) 194–199.
  • 37. Takahashi, M., Shibata, M. and Niki, E. Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl-1-pyrenylphosphine. Free Radic. Biol. Med. 31 (2001) 164-174.
  • 38. Valencia, J.V., Weldon, S.C., Quinn, D., Kiers, G.H., DeGroot, J., TeKoppele J.M. and Huges, T.E. Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal. Biochem. 324 (2004) 68–78. DOI: 10.1016/j.ab.2003.09.013.
  • 39. Yan, S.F., Ramasamy, R., Naka, Y. and Schmidt, A.M. Glycation, inflammation, and RAGE: A scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 93 (2003) 1159–1169. DOI: 10.1161/ 01.RES.0000103862.26506.3D.
  • 40. Sergent, O., Ekroos, K., Lefeuvre-Orfila, L., Rissel, M., Forsberg, G.B., Oscarsson J., Andersson, T.B. and Lagadic-Gossmann, D. Ximelagatran increases membrane fluidity and changes membrane lipid composition in primary human hepatocytes. Toxicol. in Vitro 23 (2009) 1305–1310. DOI: 10.1016/j.tiv.2009.07.019.
  • 41. Wu, L., Ma, L., Nicholson, L.F.B. and Black, P.N. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir. Med. 105 (2011) 329–336. DOI: 10.1016/j.rmed.2010.11.001.
  • 42. Hirose, J., Yamabe, S., Takada, K., Okamoto, N., Nagai, R. and Mizuta H. Immunohistochemical distribution of advanced glycation end products (AGEs) in human osteoarthritic cartilage. Acta Histochem. 113 (2011) 613–618. DOI: 10.1016/j.acthis.2010.06.007.
  • 43. Pytel, E., Olszewska-Banaszczyk, M., Koter-Michalak, M. and Broncel, M. Increased oxidative stress and decreased membrane fluidity in erythrocytes of CAD patients. Biochem. Cell Biol. 91 (2013) 315–318. DOI: 10.1139/bcb-2013-0027.
  • 44. Ziobro, A., Duchnowicz, P., Mulik, A., Koter-Michalak, M. and Broncel, M. Oxidative damages in erythrocytes of patients with metabolic syndrome. Mol. Cell Biochem. 378 (2013) 267–273. DOI: 10.1007/s11010-013-1617-7.
  • 45. Sonmez, M., Ince, H.Y., Yalcin, O., Ajdžanović, V., Spasojević, I., Meiselman, H.Z. and Baskurt, O.K. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size. PLoS One 8 (2013) e76579. DOI: 10.1371/journal. pone.0076579.
  • 46. Olchowik, E., Lotkowski, K., Mavlyanov, S., Abdullajanova, N., Ionov, M., Bryszewska, M. and Zamaraeva, M. Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cell. Mol. Biol. Lett. 17 (2012) 333–348. DOI: 10.2478/s11658-012-0014-7.
  • 47. Ajdžanović, V., Spasojević, I., Sošić-Jurjević, B., Filipović, B., Trifunović, S., Sekulić, M. and Milošević, V. The negative effect of soy extract on erythrocyte membrane fluidity: an electron paramagnetic resonance study. J. Membr. Biol. 239 (2011) 131–135. DOI: 10.1007/s00232-010-9332-8.
  • 48. Ajdžanović, V., Mojić, M., Maksimović-Ivanić, D., Bulatović, M., Mijatović, S., Milošević, V. and Spasojević, I. Membrane fluidity, invasiveness and dynamic phenotype of metastatic prostate cancer cells after treatment with soy isoflavones. J. Membr. Biol. 246 (2013) 307–314. DOI: 10.1007/s00232-013-9531-1.
  • 49. Maldonado-Celis, M.E., Bousserouel, S., Gosse, F., Lobstein, A. and Raul, F. Apple procyanidins activate apoptotic signaling pathway in human colon adenocarcinoma cells by a lipid-raft independent mechanism. Biochem. Biophys. Res. Commun. 388 (2009) 372–376. DOI: 10.1016/j.bbrc.2009.08.016.
  • 50. Annaba, F., Kumar, P., Dudeja, A.K., Saksena, S., Gill, R.K. and Alrefai, W.A. Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT. Am. J. Physiol. Gastrointest. Liver Physiol. 298 (2010) G467–G473. DOI: 10.1152/ajpgi.00360.2009.
  • 51. Mylonas, C. and Kouretas, D. Lipid peroxidation and tissue damage. In Vivo 13 (1999) 295–309.
  • 52. Veskoukis, A.S., Tsatsakis, A.M. and Kouretas, D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 17 (2012) 11–21. DOI: 10.1007/s12192-011-0293-3.
  • 53. Shimizu, M., Shirakami, Y., Sakai, H., Yasuda, Y., Kubota, M., Adachi, S., Tsurumi, H., Hara, Y. and Moriwaki H. (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem. Biol. Interact. 185 (2010) 247–252. DOI: 10.1016/j.cbi.2010.03.036.
  • 54. Tarahovsky, Y.S., Kim, Y.A., Yagolnik, E.A. and Muzafarov, E.N. Flavonoid–membrane interactions: Involvement of flavonoid–metal complexes in raft signaling. Biochim. Biophys. Acta (BBA) – Biomembranes 1838 (2014), 1235–1246. DOI: 10.1016/ j.bbamem.2014.01.021.
  • 55. Scheidt, H.A., Pampel, A., Nissler, L., Gebhardt, R. and Huster, D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim. Biophys. Acta (BBA) – Biomembranes 1663 (2004) 97–107. DOI: 10.1016/j.bbamem.2004.02.004.
  • 56. Oh, H.Y., Leem, J., Yoon, S.J., Yoon, S. and Hong, S.J. Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor. Biochem. Biophys. Res. Commun. 393 (2010) 319–324. DOI: 10.1016/j.bbrc.2010.01.133.
  • 57. Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47 (2006) 1597–1598. DOI: 10.1194/jlr.E600002-JLR200.
  • 58. Simons, K. and Vaz, W.L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33 (2004) 269–295. DOI: 10.1146/annurev.biophys.32.110601.141803.
  • 59. Spector, A.A, Mathur, S.N., Kaduce, T.L. and Hyman B.T. Lipid nutrition and metabolism of cultured mammalian cells. Prog. Lipid Res. 19 (1981) 155–186.
  • 60. Spector, A.A. and Yorek., M.A. Membrane lipid composition and cellular function. J. Lipid Res. 26 (1985) 1015–1035.
  • 61. Elson, E.L., Fried, E., Dolbow, J.E. and Genin, G.M. Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39 (2010) 207–226. DOI: 10.1146/annurev.biophys. 093008.131238.
  • 62. Golfetto, O., Hinde, E. and Grattone, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104 (2013) 1238–1247. DOI: http://dx.doi.org/ 10.1016/j.bpj.2012.12.057.
  • 63. Nowotarski, K., Sapoń, K., Kowalska, M., Janas, T. and Janas T. Membrane potential-dependent binding of polysialic acid to lipid monolayers and bilayers. Cell. Mol. Biol. Lett. 18 (2013) 579–594. DOI: 10.2478/s11658- 013-0108-x.
  • 64. Naudí, A., Jové, M., Ayala, V., Portero-Otín, M., Barja, G. and Pamplona, G. Membrane lipid unsaturation as physiological adaptation to animal longevity. Front. Physiol. 4 (2013) 1–13. DOI: 10.3389/fphys.2013.00372.
  • 65. Van der Heide, D., Kastelijn, J. and Schröder-van der Elst, J.P. Flavonoids and thyroid disease. Biofactors 19 (2003) 113–119. DOI: 10.1002/biof. 5520190303.
  • 66. Leclercq, G. and Jacquot, Y. Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer-considerations concerning related efficacy and safety. J. Steroid Biochem. Mol. Biol. 139 (2014) 237–244. DOI: 10.1016/j.jsbmb. 2012.12.010.
  • 67. Cederroth, C.R., Zimmermann, C. and Nef, S. Soy, phytoestrogens and their impact on reproductive health. Mol. Cell. Endocrinol. 355 (2012) 192–200. DOI: 10.1016/j.mce.2011.05.049.
  • 68. Ohlsson, A., Ullerås, E., Cedergreen, N. and Oskarsson, A. Mixture effects of dietary flavonoids on steroid hormone synthesis in the human adrenocortical H295R cell line. Food Chem. Toxicol. 48 (2010) 3194–3200. DOI: 10.1016/j.fct.2010.08.021.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f65a810-c0cc-49c3-a69d-9ddb684ca5e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.