PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 1 |

Tytuł artykułu

Prey selection and seasonal diet changes in the western barbastelle bat (Barbastella barbastellus)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of the study was to describe the diet composition of western barbastelle bat (Barbastella barbastellus), its seasonal changes and main factors determining trophic niche of the species. Barbastelle bat feeds predominantly on moths and has the narrowest trophic niche within the entire studied bat community. A comparison of the food supply and the diet composition showed selectivity for larger species of moths. An increasing of absolute abundance of preferred larger moths within summer is accompanied with narrowing of bat's trophic niche. This pattern corresponds well with the conclusions of optimal foraging theory. Larger moths are preferred even in a period of their low relative abundance within a peak of abundance of smaller species. There are no abrupt seasonal changes in the bat's diet within season, but the narrow pool of available food supply seems to determine the trophic niche breadth within low prey diversity periods in early spring and late autumn. The exception is a late autumn period; most probably due to a change in food supply are preferred larger moths replaced in the diet by smaller individuals. Most of the moths' species cease to fly and chiefly only smaller moth species are flying and attracted by UV light. Larger moths still occur at studied area at that time, but they display minimal flying activities and they are detected using vegetation beating and sweeping. Furthermore, syntopic motheating foliage gleaner (Plecotus auritus) still feeds on larger moths at that time. This may indicate that the change in the diet of B. barbastellus is a consequence of poor or absent gleaning abilities of this species, which is not able to pick up the prey from the surface as P. auritus. Different hunting strategies are probably efficient trophic niche partitioning mechanisms reducing interspecific competition between these syntopic moth eating bats.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

1

Opis fizyczny

p.81-92

Twórcy

autor
  • The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Kvetnove namesti 391, CZ-252 Pruhonice, Czech Republic
autor
  • South Moravian Museum Znojmo, Premyslovcu 6, CZ-669 45 Znojmo, Czech Republic
  • Department of Zoology, Charles University, Vinicna 7, CZ-128 44 Praha 2, Czech Republic
autor
  • Department of Zoology, National Museum (Natural History), Vaclavske namesti 68, CZ-115 79 Praha 1, Czech Republic
  • Department of Zoology, Charles University, Vinicna 7, CZ-128 44 Praha 2, Czech Republic

Bibliografia

  • 1. S. J. Agosta , D. Morton , and K. M. Kuhn . 2003. Feeding ecology of the bat Eptesicus fuscus: ‘preferred’ prey abundance as one factor influencing prey selection and diet breadth. Journal of Zoology (London), 260: 169–177. Google Scholar
  • 2. I. AhléN 1990. Identification of bats in flight. Swedish Society for Conservation of Nature & The Swedish Youth Association for Environmental Studies and Conservation, Stockholm, 50 pp. Google Scholar
  • 3. M. E. Anderson , and P. A. Racey . 1991. Feeding behaviour of captive brown long-eared bats, Plecotus auritus. Animal Behaviour, 42: 489–493. Google Scholar
  • 4. M. E. Anderson , and P. A. Racey . 1993. Discrimination between fluttering and non-fluttering moths by brown long-eared bats, Plecotus auritus. Animal Behaviour, 46: 1151–1155. Google Scholar
  • 5. M. Andreas 2002. Feeding ecology of a bat community. Ph.D. Thesis, Czech Agriculture University, Prague, 163 pp. [In Czech]. Google Scholar
  • 6. R. M. R. Barclay 1985. Long- versus short-range foraging strategies of hoary (Lasiurus cinereus) and silver-haired (Lasionycteris noctivagans) bats and the consequences for prey selection. Canadian Journal of Zoology, 63: 2507–2515. Google Scholar
  • 7. Z. Bauerová 1978. Contribution to the trophic ecology of Myotis myotis. Folia Zoologica, 27: 305–316 Google Scholar
  • 8. A. Beck 1995. Fecal analyses of European bat species. Myotis, 32–33: 109–119. Google Scholar
  • 9. J. J. Belwood , and M. B. Fenton . 1976. Variation in the diet of Myotis lucifugus (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 54: 1674–1678. Google Scholar
  • 10. W. Bogdanowtcz , M. B. Fenton , and K. Daleszczyk . 1999. The relationship between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology (London), 247:381–393. Google Scholar
  • 11. C. M. C. Catto , A. M. Hutson , and P. A. Racey . 1994. The diet of Eptesicus serotinus in southern England. Folia Zoologica, 43: 307–314. Google Scholar
  • 12. R. F. Denno , and H. Dingle . 1981. Insect life history patterns: habitat and geographic variation. Springer-Verlag, New York, 225 pp. Google Scholar
  • 13. A. Denzinger , B. M. Siemers , A. Schaub , and H.-U. Schnitzler . 2001. Echolocation by the barbastelle bat, Barbastella barbastellus. Journal of Comparative Physiology, 187A: 521–528. Google Scholar
  • 14. E. Döring 1955. Zur Morphologie der Schmetterlingseier. Akademie-Verlag, Berlin, 154 + lxi pp. Google Scholar
  • 15. M. B. Fenton 1982. Echolocation, insect hearing, and feeding ecology of insectivorous bats. Pp. 261–285, in Ecology of bats ( T. H. Kunz , ed.). Plenum Press, New York, 425 pp. Google Scholar
  • 16. M. B. Fenton 1990. The foraging behaviour and ecology of animal-eating bats. Canadian Journal of Zoology, 68: 411–422. Google Scholar
  • 17. M. B. Fenton , and G. K. Morris . 1976. Opportunistic feeding by desert bats (Myotis spp.). Canadian Journal of Zoology, 54: 526–530. Google Scholar
  • 18. J. S. Findley 1976. The structure of bat communities. The American Naturalist, 110: 129–139. Google Scholar
  • 19. J. S. Findley 1993. Bats: a community perspective. Cambridge University Press, Cambridge, 167 pp. Google Scholar
  • 20. C. L. Furlonger , H. J. Dewar , and M. B. Fenton . 1987. Habitat use by foraging insectivorous bats. Canadian Journal of Zoology, 65: 284–288. Google Scholar
  • 21. H. R. Goerlitz , H. M. Ter Hofstede , M. R. K. Zeale , and G. Jones . 2010. An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20: 1568–1572. Google Scholar
  • 22. J. Helešic , and F. KubÍček . 1999. Hydrobiology of the Dyje River in the National Park Podyji, Czech Republic. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Biologia, 102: 1–138. Google Scholar
  • 23. L. R. Hoare 1991. The diet of Pipistrellus pipistrellus during the pre-hibernal period. Journal of Zoology (London), 225: 665–670. Google Scholar
  • 24. G. Jones 1990. Prey selection by the greater horseshoe bat (Rhinolophus ferrumequinum): optimal foraging by echolocation? Journal of Animal Ecology, 59: 587–602. Google Scholar
  • 25. C. J. Krebs 1989. Ecological methodology. Harper Collins Publishers, New York, 654 pp. Google Scholar
  • 26. T. H. Kunz 1988. Methods of assessing the availability of prey to insectivorous bats. Pp. 191–210, in Ecological and behavioral methods for the study of bats ( T. H. Kunz , ed.). Smithsonian Institution Press, Washington, D.C., 533 pp. Google Scholar
  • 27. P. Leraut 2006. Moths of Europe 1. NAP Editions, Verriéres le Buisson, 387 pp. Google Scholar
  • 28. J. Macek , J. Dvořák , L. Traxler , and V. červenka . 2007. Butterflies and caterpillars of Central Europe. I. Night moths. Academia, Prague, 371 pp. [In Czech]. Google Scholar
  • 29. J. Macek , J. Dvořák , L. Traxler , and V. červenka . 2008. Butterflies and caterpillars of Central Europe. II. Night moths — Noctuidae. Academia, Prague, 490 pp. [In Czech]. Google Scholar
  • 30. C. M. McAney , and J. S. Fairley . 1988. Activity patterns of lesser horseshoe bat Rhinolophus hipposideros at summer roost. Journal of Zoology (London), 216: 325–338. Google Scholar
  • 31. C. M. McAney , C. B. Shiel , C. Sullivan , and J. S. Fairley . 1991. The analysis of bat droppings. The Mammal Society, London, 48 pp. Google Scholar
  • 32. G. Neuweiler 1984. Foraging, echolocation and audition in bats. Naturwissenschaften, 71: 446–455. Google Scholar
  • 33. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society, 316B: 335–427. Google Scholar
  • 34. R. Obrtel , and V. Holiovšá . 1974. Trophic niches of Apodemus flavicollis and Clethrionomys glareolus in a lowland forest. Acta Scientarum Naturalium Academiae Scientiarum Bohemicae Brno, 8: 1–37. Google Scholar
  • 35. B. D. Patterson , M. R. Willig , and R. D. Stevens . 2003. Trophic strategies, niche partitioning, and patterns of ecological organization. Pp. 536–579, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, 779 pp. Google Scholar
  • 36. M. J. R. Pereira , H. Rebelo , A. Rainho , and J. M. Palmeirim . 2002. Prey selection by Myotis myotis (Vespertilionidae) in a Mediterranean region. Acta Chiropterologica, 4: 183–193. Google Scholar
  • 37. E. B. poulton 1929. British insectivorous bats and its prey. Proceedings of the Zoological Society of London, 19: 227–303. Google Scholar
  • 38. G. H. Pyke , H. R. Pulliam , and E. L. Charnov . 1977. Optimal foraging: selective review of theory and tests. The Quarterly Review of Biology, 52: 137–154. Google Scholar
  • 39. A. Reiter , P. Benda , A. HoffmannovÁ , and M. Andreas . 2010. Project: swarming bats in Ledové sluje. Pp. 127–138, in A tribute to bats ( I. Horáček and M. Uhrin , eds.). The Publishing House Lesnická práce, s.r.o., Kostelec nad Černými lesy, 400 pp. Google Scholar
  • 40. O. Ryberg 1947. Studies on bats and bat parasites. Bokförlaget Svensk Natur, Stockholm, 330 pp. Google Scholar
  • 41. J. Rydell 1986. Foraging and diet of the northern bat Eptesicus nilssoni in Sweden. Holarctic Ecology, 9: 272–276. Google Scholar
  • 42. J. Rydell 1989. Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Holarctic Ecology, 12: 16–20. Google Scholar
  • 43. J. Rydell , and W. Bogdanowicz . 1997. Barbastella barbastellus. Mammalian Species, 557: 1–8. Google Scholar
  • 44. J Rydell , G. Natuschke , A. Theiler , and P. E. Zingg . 1996. Food habits of the barbastelle bat Barbastella barbastellus. Ecography, 19: 62–66. Google Scholar
  • 45. K. Safi , and B. M. Siemers . 2010. Implications of sensory ecology for species coexistence: biased perception links predator diversity to prey size distribution. Evolutionary Ecology, 24: 703–713. Google Scholar
  • 46. W. Schober , and E. Grtmmberger . 1997. The bats of Europe and North America. THF Publications Inc., Neptune City, NJ, USA, 239 pp. Google Scholar
  • 47. C. B. Shiel , C. M. McAney , and J. S. Fairley . 1991. Analysis of the diet of Natterer's bat Myotis nattereri and the common long-eared bat Plecotus auritus in the West of Ireland. Journal of Zoology (London), 223: 299–305. Google Scholar
  • 48. B. M. Siemers , and R. Güttinger . 2006. Prey conspicuousness can explain apparent prey selectivity. Current Biology, 16: 157–159. Google Scholar
  • 49. B. M. Siemers , and S. M. Swift . 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology, 59: 373–380. Google Scholar
  • 50. A. Sierro 1999. Habitat selection by barbastelle bats (Barbastella barbastellus) in the Swiss Alps (Valais). Journal of Zoology (London), 248: 429–432. Google Scholar
  • 51. A. Sierro , and R. Arlettaz . 1997. Barbastelle bats (Barbastella spp.) specialize in the predation of moths: implications for foraging tactics and conservation. Acta Oecologica, 18: 91–106. Google Scholar
  • 52. Statsoft. 2001. Statistica for Windows (Computer program manual). StatSoft, Inc., Tulsa, USA. Google Scholar
  • 53. D. W. Stephens , and J. R. Krebs . 1986. Foraging theory. Princeton University Press, Princeton, 247 pp. Google Scholar
  • 54. S. M. Swift , and P. A. Racey . 1983. Resource partitioning in two species of vespertilionid bats (Chiroptera) occupying the same roost. Journal of Zoology (London), 200: 249–259. Google Scholar
  • 55. S. M. Swift , P. A. Racey , and M. I. Avery . 1985. Feeding ecology of Pipipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. II. Diet. Journal of Animal Ecology, 54: 217–225. Google Scholar
  • 56. J. Šumpich 2004. Results of butterfly communities monitoring (Lepidoptera: Hepialoidea, Zygaenoidea: Limacodidae, Cossoidea, Lasiocampoidea, Bombycoidea, Drepanoidea, Geometroidea, Noctuidea) in 2004 within the frame of project of establishing national biodiversity monitoring network in the Czech Republic (VaV/610/4/01). Part B: Report concerning monitored site near Hnanice. Research report for Agency for Nature Conservation and Landscape Protection of the Czech Republic, Prague, 16 pp. [In Czech]. Google Scholar
  • 57. N. Vaughan 1997. The diets of British bats (Chiroptera). Mammal Review, 27: 77–94. Google Scholar
  • 58. C. B. Williams 1939. An analysis of four year captures of insects in a light trap. Part I. General survey; sex proportion; phenology and time of flight. Transactions of the Royal Entomological Society of London, 89: 79–132. Google Scholar
  • 59. A. Zahn , and S. Maier . 1997. Jagdaktivität von Fledermäusen an Bächen und Teichen. Zeitschrift für Säugetierkunde, 62: 1–11. Google Scholar
  • 60. M. R. K. Zeale , R. K. Butlin , G. L. A. Barker , D. S. Lees , and G. Jones . 2011. Taxon specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11: 236–244. Google Scholar
  • 61. P. E. Zingg 1994. Neue Vorkommen der Mopsfledermaus (Barbastella barbastellus Schreber, 1774) im Berner Oberland. Mitteilungen des Naturwissenschaftliche Gesellschaft Thun, 12: 121–132. Google Scholar

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f5a2dc5-5bcf-429a-810d-ea84dc6fc435
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.