EN
This study was performed to determine if a high supply of N-NO₃⁻ is capable of mitigating negative salinity effects on photosynthesis and growth through the stimulation of nitrate assimilation, which could act as an sink from photosynthetic electron transport chain and restrict the over reduction in thylakoid membrane in Jatropha curcas leaves. The experiment was arranged in a factorial design with two nitrate concentrations (1 and 10 mM) and two NaCl levels (0 and 100 mM). Salt-stressed plants supplied with high NO₃⁻ demonstrated a higher nitrate uptake rate, nitrate reductase activity and solubleprotein content when compared with plants that presented low nitrate uptake. High nitrate assimilation was associated with higher leaf growth, CO₂ assimilation and lower membrane damage in salt-stressed plants. The superior performance of salt-stressed plants grown with high NO₃⁻ was indicated by a higher effective quantum yield of PSII and electron transport rate and lower energy excess at the PSII level and non-photochemical quenching. Interestingly, a high NO₃⁻ level in the absence of NaCl did not alter the leaf growth, photochemical activity and gas exchange parameters when compared with plants supplied with low nitrate. The proline and glycinebetaine contents were similarly increased in both low- and high-NO₃⁻ saltstressed plants. Our data suggest that the favorable effects induced by high nitrate supply were possibly associated with stimulation in the nitrate assimilatory pathway. This process might have acted as a sink of electrons from the thylakoid membranes minimizing photo-damage and stimulating CO₂ assimilation under salinity in J. Curcas.