PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Comparison of measured and modelled traffic-related air pollution in urban street canyons

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The level of hazardous traffic pollutants, such as nitrogen dioxide (NO₂ ), significantly increases in street canyons, which is a relevant determinant of assessing human exposure and health risks and deteriorates quality of urban air. The aim of the present study was to measure air pollution of NO₂ by passive samplers in five street canyon sites with different traffic and building characteristics during two-week measurement periods in each season and to compare measured NO₂ concentrations with models using the Airviro street canyon model. The data of meteorological parameters, street canyon orientation and urban background air pollution were taken into account. The study results showed that the highest measured and modelled concentrations of NO₂ in street canyons were determined during spring and summer, and modelled values were higher than those measured with passive samplers, while during winter and autumn the results were vice versa. The greatest difference between measured and modelled concentrations of NO₂ was determined in winter, while the highest degree of agreement was assessed in summer. We found a strong positive correlation between the measurements and modelling results. The research demonstrates the importance of considering the urban micro environments such as street canyons for the effective assessment of human exposure to transport-related emissions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3115-3123,fig.,ref.

Twórcy

autor
  • Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
autor
  • Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
  • Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania

Bibliografia

  • 1. MAZZEO N.A., VENEGAS L.E. Evaluation of natural and traffic-producing turbulences using full scale data from four street canyons. Cro Met J. 43, 662, 2008.
  • 2. VARDOULAKIS S., FISHER B.E.A., PERICLEOUS K., GONZALEZ-FLESCA N. Modelling air quality in street canyons: a review. Atmos Environ. 37, 155, 2003.
  • 3. VINTAR MALLY K., OGRIN M. Spatial variations in nitrogen dioxide concentrations in urban Ljubljana, Slovenia. Morav Geogr Rep. 23, 27, 2015.
  • 4. YAZID A.W.M., SIDIK N.A.C., SALIM S.M., SAQR K.M. A review on the flow structure and pollutant dispersion in urban street canyons for urban planning strategies. Simul Gaming. 90, 892, 2014.
  • 5. BELANGER K., HOLFORD T.R., GENT J.F., HILL M.E., KEZIK J.M., LEADERER B.P. Household levels of nitrogen dioxide and pediatric asthma severity. Epidemiology. 24, 320, 2013.
  • 6. CLARK N.A., DEMERS P.A., KARR C.J., KOEHOORN M., LENCAR C., TAMBURIC L., BRAUER M. Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma. Environ Health Perspect. 118, 284, 2010.
  • 7. SATHE YOGESH V. Air quality modeling in street canyons of Kolhapur city, Maharashtra, India. Univers J Environ Res Technol. 2, 97, 2012.
  • 8. KIM M.J., PARK R.J., KIM J.J. Urban air quality modeling with full O₃-NOₓ-VOC chemistry: Implications for O₃ and PM air quality in a street canyon. Atmos Environ. 47, 330, 2012.
  • 9. RAASCHOU-NIELSEN O., HERTEL O., VIGNATI E., BERKOWICZ R., JENSEN S.S., LARSEN V.B., LOHSE C., OLSEN J.H. An air pollution model for use in epidemiological studies: evaluation with measured levels of nitrogen dioxide and benzene. J Expo Anal Environ Epidemiol. 10, 4, 2000.
  • 10. YAO X., LAU N.T., CHAN C.K., FANG M. The use of tunnel concentration profile data to determine the ratio of NO₂/NOₓ directly emitted from vehicles. Atmos Chem Phys Discuss. 5, 12723, 2005.
  • 11. MIAO Y., LIU S., ZHENG Y., WANG S., LI Y. Numerical study of traffic pollutant dispersion within different street canyon configuration. Adv Meteorol. 2014, 1, 2014.
  • 12. VENEGAS L.E., MAZZEO N.A., DEZZUTTI M.C. A simple model for calculating air pollution within street canyons. Atmos Environ. 87, 77, 2014.
  • 13. BALCZÓ M., GROMKE C., RUCK B. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorol Z. 18, 197, 2009.
  • 14. RÁCZ È.V.P., HORVÁTH Z. Small-scale differences of urban NOₓ exposition in field measurement data. The Sustainable City IX. 2, 1513, 2014.
  • 15. ZHOU Y., LEVY J.I. The impact of urban street canyons on population exposure to traffic-related primary pollutants. Atmos Environ. 42, 3087, 2008.
  • 16. MAZZEO N.A., VENEGAS L.E., MARTIN P.B. Analysis of full-scale data obtained in a street canyon. Atmósfera. 20, 93, 2007.
  • 17. PARK S.J., KIM J.J., KIM M.J., PARK R.J., CHEONG H.B. Characteristics of flow and reactive pollutant dispersion in urban street canyons. Atmos Environ. 108, 20, 2015.
  • 18. GIDHAGEN L., JOHANSSON H., OMSTEDT G. SIMAIR – evaluation tool for meeting the EU directive on air pollution limits. Atmos Environ. 43, 1029, 2009.
  • 19. HAGGMARK L., IVARSSON K.I., GOLLVIK S., OLOFSSON P.O. Mesan, an operational mesoscale analysis system. Tellus A. 52, 2, 2000.
  • 20. OMSTEDT G., ANDERSSON S., GIDHAGEN L., ROBERTSON L. Evaluation of new model tools for meeting the targets of the EU Air Quality Directive: a case study on the studded tyre use in Sweden. Int J Environ Pollut. 47, 79, 2011.
  • 21. JENKINSON P., HILL R., LUTMAN E. Validation of The Airviro Gaussian Plume And Street Canyon Model For The Prediction Of NOₓ And NO₂ Concentrations Arising From Road Traffic. 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. July 2-5, 53, Cambridge, United Kingdom, 2007.
  • 22. GRABYS J., USOVAITE A., GASPARIUNAS J. Environmental pollutants emission from public transport assessment and analysis in Vilnius city. The 8th International Conference Environmental Engineering: Selected papers. Ed. by Čygas D, Froehner KD. Vilnius: Technika. May 19-20, 893, Vilnius, Lithuania, 2011.
  • 23. AFIQ W.M.Y., AZWADI C.S.N., SAQR K.M. Effects of buildings aspect ratio, wind speed and wind direction on flow structure and pollutant dispersion in symmetric street canyons: a review. Int J Mech Mater Eng. 7, 158, 2012.
  • 24. BAKARMAN M.A., CHANG J.D. The Influence of Height/width Ratio on Urban Heat Island in Hot-arid Climates. Procedia Eng. 118, 101, 2015.
  • 25. KROCHMAL D., GORSKI L. Determination of nitrogen dioxide in ambient air by use of a passive sampling technique and triethanolamine as absorbent. Environ Sci Technol. 25, 531, 1991.
  • 26. BYANJU R.M., GEWALI M.B., MANANDHAR K. Passive sampling of ambient nitrogen dioxide using local tubes. J Environ Prot. 3, 177, 2012.
  • 27. KROCHMAL D., KALINA A. Measurements of nitrogen dioxide and sulphur dioxide concentrations in urban and rural areas of Poland using a passive sampling method. Environ Pollut. 96, 401, 1997.
  • 28. NAMDEO A., MITCHELL G., DIXON R. TEMMS: an integrated package for modelling and mapping urban traffic emissions and air quality. Environ Model Softw. 17, 177, 2002.
  • 29. SMHI. SMHI Airviro Swedish Meteorological and Hydrological Institute. Available online: http://www.smhi.se/airviro. Accessed 14 February 2017.
  • 30. DĖDELĖ A., MIŠKINYTĖ A. The statistical evaluation and comparison of ADMS-Urban model for the prediction of nitrogen dioxide with air quality monitoring network. Environ Monit Assess. 187, 578, 2015.
  • 31. BENNETT N.D., CROKE B.F.W., GUARISO G., GUILLAUME J.H.A., HAMILTON S.H., JAKEMAN A.J., MARSILI-LIBELLI S., NEWHAMA L.T.H., NORTON J.P., PERRIN C., PIERCE S.A., ROBSON B., SEPPELT R., VOINOV A.A., FATH B.D., ANDREASSIAN V. Characterising performance of environmental models. Environ Model Softw. 40, 1, 2013.
  • 32. LEGATES D.R., MCCABE G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour Res. 35, 233, 1999.
  • 33. ROJAS A.L.P. Simple atmospheric dispersion model to estimate hourly ground-level nitrogen dioxide and ozone concentrations at urban scale. Environ Model Softw. 59, 127, 2014.
  • 34. ZHU G., ZHANG P., TSHUKUDU T., YIN J., FAN G., ZHENG X. Forecasting traffic-related nitrogen oxides within a street canyon by combining a genetic algorithm-back propagation artificial neural network and parametric models. Atmos Pol Res. 6, 1087, 2015.
  • 35. EEFTENS M., BEEKHUIZEN J., BEELEN R., WANG M., VERMEULEN R., BRUNEKREEF B., HUSS A., HOEK G. Quantifying urban street configuration for improvements in air pollution models. Atmos Environ. 72, 1, 2013.
  • 36. VARDOULAKIS S., VALIANTIS M., MILNER J., APSIMON H. Operational air pollution modelling in the UK – Street canyon applications and challenges. Atmos Environ. 41, 4622, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2c4602a1-7e10-40c4-94e8-5bcbefbfe02e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.