PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 4 |

Tytuł artykułu

Phylogenetic and biochemical characterization of a new halo-thermotolerant, biofilm-forming Bacillus from saline lake of Iran

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, five halotolerant Bacillus isolates from Aran-Bidgol Saline Lake in Iran were identified from saline environments. Screening of the bacteria led to the identification of a unique halo-thermotolerant Bacillus. On the basis of genetic and phenotypic data, this isolate was closely related to Bacillus licheniformis. But isolated Bacillus can be distinguished from B. licheniformis by salt tolerance, 16SrDNA sequence and some different physicochemical properties. Thus, suggested that the isolate was not the known Bacillus. Optical density analysis indicated strong biofilm formation for this strain. Also this isolate exhibited average tolerance to 1-25 mM concentrations of zinc and was sensitive to all concentrations of nickel. In biosurfactant production assay, this Bacillus exhibited the high activity for semi-quantitative oil displacement test (3.14 ±0.02 cm²) and evaluated positive for drop-collapse test and hemolytic activity. Moreover, amylase, protease and DNase enzymes produced in presence of 10-20% salt of medium. Therefore, identified Bacillus could supply potential microbial materials for bioremediation purposes and biotechnological applications.

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.419-425,fig.,ref.

Twórcy

autor
  • Kashan University of Medical Sciences, Kashan, Iran
autor
  • Kashan University of Medical Sciences, Kashan, Iran
  • Kashan University of Medical Sciences, Kashan, Iran
autor
  • Kashan University of Medical Sciences, Kashan, Iran
autor

Bibliografia

  • Bagheri M., M. Didari, M.A. Amoozegar, P. Schumann, C. Sanchez-Porro, M. Mehrshad and A. Ventosa. 2012. Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. Int. J. Syst. Evol. Microbiol. 62: 811-816.
  • Bodour A.A., K.P. Drees and R.M. Maier. 2003. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl. Environ. Microbiol. 69: 3280-3287. Coronado M.C., C. Vargas, J. Hofemeister, A. Ventosa and J.J. Nieto. 2000. Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridian. Ferns. Microbiol. Lett. 183: 67-71.
  • Davey M.E. and G.A. Otoole. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847-867.
  • Demergasso C, E.O. Casamayor, G. Chong, P. Galleguillos, L. Escudero and C. Pedros-Alio. 2004. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS. Microbiol. Ecol. 48: 57-69.
  • Ettoumi B., N. Raddadi, S. Borin, D. Daffonchio, A. Boudabous and A. Cherif. 2009. Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J. Basic. Microbiol. 49: 13-23.
  • Ghozlan H., H. Deif, R.A. Kandil and S. Sabry. 2006. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J. Gen. Appl. Microbiol. 52: 63-72.
  • Gomes J. and W. Steiner. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42: 223-235.
  • Hassen A., N. Saidi, M. Cherif and A. Boudabous. 1998. Resistance of environmental bacteria to heavy metals. Bioresource. Technol. 64: 7-15.
  • Kamika I. and M.N. Momba. 2011. Comparing the tolerance limits of selected bacterial and protozoan species to nickel in wastewater systems. Sci. Total. Environ. 410-411: 172-181.
  • Lenore S.C., A.E. Greenberg and R.R. Trussell. 1989. Standard Methods for the Examination of Water and Wastewater, 17nd ed. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, D.C.
  • Llamas I., J.A. Mata, R. Tallon, P. Bressollier, M.C. Urdaci, E. Quesada and V. Bejar. 2010. Characterization of the exopolysaccharide produced by Salipiger mucosus A3T, a halophilic species belonging to the Alphaproteobacteria, isolated on the Spanish Mediterranean Seaboard. Mar. Drugs. 8: 2240-2251.
  • Makhdoumi-Kakhki A., M.A. Amoozegar, B. Kazemi, L. Pasic and A. Ventosa. 2011. Prokaryotic diversity in Aran-Bidgol Salt Lake, the largest hypersaline playa in Iran. Microbes. Environ. 27: 87-93.
  • Margesin R. and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73-83.
  • Mata J.A., V. Bejar, I. Llamas, S. Arias, P. Bressollier, R. Tallon, M.C. Urdaci and E. Quesada. 2006. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res. Microbiol. 157: 827-835.
  • Maugeri T.L., C. Gugliandolo, D. Caccamo, A. Panico, L. Lama, A. Gambacorta and B. Nicolaus. 2002. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharides. Biotechnol. Lett. 24: 515-519.
  • Morikawa, M., H. Daido, T. Takao, S. Murata, Y. Shimonishi, and T. Imanaka. 1993. A new Lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol. 175: 6459-6466. Nichols C.A.M., J. Guezennec and J.P. Bowman. 2005. Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, Sea Ice, and Deep-Sea Hydrothermal Vents: a review. Mar. Biotechnol. 7: 253-271.
  • Oren A. 2002a. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56-63.
  • Oren A. 2002b. Molecular ecology of extremely halophilic Archaea and Bacteria. Ferns. Microbiol. Ecol. 39: 1-7.
  • Poli A., G. Anzelmo and B. Nicolaus. 2010. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs. 8: 1779-1802.
  • Rohban R., M.A. Amoozegar and A. Ventosa. 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 6: 333-340.
  • Safary A., M. Roayayi Ardakani, A. Abolhasani Suraki, M. Akbarzade Khiavi and H. Motamedi. 2010. Isolation and Characterization of Biosurfactant Producing Bacteria from Caspian Sea. Biotechnology 9: 378-382.
  • Saitou N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  • Seno Y., R. Kariyama, R. Mitsuhata, K. Monden and H. Kumon. 2005. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. Acta. Med. Okayama. 59: 79-87.
  • Smibert R.M. and N.R. Krieg. 1994. Phenotypic characterization, pp. 607-654. In: Gerhardt P., R.G.E. Murray, W.A. Wood and N.R. Krieg (eds.), Methods for general and molecular bacteriology. American Society of Microbiology, Washington, D.C.
  • Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
  • Thompson J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res. 22: 4673-4680.
  • Toner B., A. Manceau, M.A. Marcus, D.B. Millet and G. Sposito. 2005. Zinc sorption by a bacterial biofilm. Environ. Sci. Technol. 39: 8288-8294.
  • Tourney J., B.T. Ngwenya, J.W. Fred Mosselmans and M. Magennis. 2009. Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. J. Colloid. Interface. Sci. 337: 381-389.
  • Veith B., C. Herzberg, S. Steckel, J. Feesche, K.H. Maurer, P. Ehrenreich, S. Baumer, A. Henne, H. Liesegang, R. Merkl and others. 2004. The Complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J. Mol. Microbiol. Biotechnol. 7: 204-211.
  • Ventosa A., J. Nieto and A. Oren. 1998a. Biology of Moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504-544.
  • Ventosa A., M.C. Marquez, M.J. Garabito and D.R. Arahal. 1998b. Moderately halophilic gram-positive bacterial diversity in hypersaline environment. Extremophiles 2: 297-304.
  • Weisburg W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  • Yakimov M.M., K.N. Timmis, V. Wray and H.L. Fredrickson. 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61: 1706-1713.
  • Yildiz E., B. OZCAN and M. Caliskan. 2011. Isolation, Characterization and Phylogenetic Analysis of Halophilic Archaea from a Salt Mine in Central Anatolia (Turkey). Pol. J. Microbiol 61: 111-117.
  • Zharkikh A. and W.H. Li. 1995. Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol. Phylogenet. Evol. 4: 44-63.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2bf7d200-6cb2-4c10-87c8-75bbf749211f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.