PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 58 | 194 |

Tytuł artykułu

Dissolving lignin components in spent liquor of simple inorganic complex bleaching eucalyptus pulp

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Promising results from the catalytic bleaching (Cat-bleaching) of oxygen-delignified hardwood kraft pulp (Eucalyptus urophylla × Eucalyptus grandis) with simple inorganic complexes prompted interest in discovering the soluble lignin components.The dissolved substances can be harmful to the environment and some dissolved substances may also have toxic effects on the environment. For these reasons, study of the the composition and structure of dissolved lignin components are of great importance.This investigation is part of a project on Cat-bleaching to obtain more information regarding the lignin components of bleaching effluents. The Cat-treatments of the pulp were performed at bench scale using simple inorganic complexes composed of (NH4)2S2O8 plus Cu(CH3COO)2 (Cu) or Co(CH3COO)2 (Co). The spent liquors obtained after Cat-bleaching were extracted using chloroform, in portions, and the compounds of interest from both the chloroform extracts were isolated using gravity column chromatography with the aid of the UV technique. The samples were analyzed by spectrometric(FT-IR, HSQC 2D-NMR, GC-MS) methods. The dissolved components extracted from the spent liquors from the Cat-bleaching were confirmed to be structurally similar to lignin. The major constituents extracted by organic solvents were identified as phenols, benzaldehydes, phenylethanones, benzoic acid and benzoic acid ethyl ester, which indicated extensive oxidation reactions on the pulp lignin including Cα–Cβ and alkyl-aryl cleavage in the lignin upon catalytical attack. The 2-methoxy phenol predominated, and its proportion was higher from the Cu-bleaching. But the carbonyl compounds (benzaldehyde + phenylethanone) released from the pulp after Co-bleaching had a higher ratio than those after Cu-bleaching. Identification of these carbonyl compounds from among the dissolved compounds contributed to the relation between lignin oxidation and lignin removal.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

58

Numer

194

Opis fizyczny

p.75-87,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

Bibliografia

  • Andersson K., Pranovich A., Norgren M., Eriksson M., Holmbom B. [2008]: Effects of biological treatment on the chemical structure of dissolved lignin-related substances in effluent
  • Arpe H.-J. [2010]: Industrial Organic Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Bose S.K., Francis R.C., Govender M., Bush T., Spark A. [2009]: Lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresource Technology 100: 162–1633
  • Bujanovic B., Reiner R.S., Agarwal U.P., Ralph S.A., Atalla R.H. [2005]: Structural changes of residual lignin of softwood and hardwood kraft pulp upon oxidative treatment with polyoxometalates. TAPPI Engineering, Pulping and Environmental Conf., Philadelphia, Book 2, 89–92
  • Bujanovic B., Hirth K.C., Ralph S.A., Reiner R.S., Atalla R.H. [2007]: Composition of the organic components in polyoxometalate [POM] liquors from Kraft pulp bleaching. In: Proceedings of the International Symposium on Wood Fibre and Pulping Chemistry. Durban, South Africa
  • Bujanovic B., Reiner R.S., Ralph S.A., Atalla R.H. [2011]: Polyoxometalate delignification of birch kraft pulp and effect on residual lignin. Journal of Wood Chemistry and Technology 31:121–141
  • Chan J.M.W., Bauer S., Sorek H., Sreekumar S., Wang K., Toste F.D. [2013]: Studies on the vanadium-catalyzed nonoxidative depolymerization of miscanthus giganteus-derived lignin. ACS Catalysis 3: 1369–1377
  • Chaplin R.P., Walpole A.S., Zadro S., Vorlow S., Wainwright M.S. [1984]: Nickel and cobalt ion oxidation of benzoin in ethanol and methanol solvents. Journal of Molecular Catalysis 22: 269–281
  • Colom X., Carrillo F. [2005]: Comparative study of wood samples of the northern area of Catalonia by FT-IR. Journal of Wood Chemistry and Technology 25: 1–11
  • Crawford R.L., Crawford D.L., Dizikes G.J. [1981]: Catabolism of the lignin substructure model compound dehydrodivanillin by a lignin-degrading Streptomyces. Archives of Microbiology 129: 204–209
  • Criquet J., Nebout P., Karpel Vel Leitner N. [2010]: Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation. Water Science and Technology 61: 1221–1226
  • Evtuguin D.V., Daniel A.I.D., Sivestre A.J.D., Amado F.M.L., Neto P. [2000]: Lignin aerobic oxidation promoted by molybdovanadophosphate polyanion [PMo7V5O40]. Study on the oxidative cleavage of β-O-4 aryl ether structures using model compounds. Journal of Molecular Catalysis A 154: 217–224
  • Faix O. [1991]: Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45 [Suppl.]: 21–27
  • Fengel D., Wegener G. [1989]: Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin
  • Hart P.W., Rudie A.W. [2012]]: The Bleaching of Pulp. TAPPI Press, GA, USA
  • Hebrard F., Kalck P. [2009]: Cobalt-catalyzed hydroformylation of alkenes: generation and recycling of the carbonyl species, and catalytic cycle. Chemical Reviews 109: 4272–4282
  • Huynh V.B. [1986]: Biomimetic oxidation of lignin model compounds by simple inorganic complexes. Biochemical and Biophysical Research Communications 139: 1104–1110
  • Johnson R.L., Tratnyek P.G., Johnson R.O. [2008]: Persulfate persistence under thermal activation conditions. Environmental Science & Technology 42: 9350–9356
  • Khodakov A.Y., Chu W., Fongarland P. [2007]: Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews 107: 1692–1744
  • Karim M.D.R. [2011]: Effluent loads from different ECF bleaching sequences used in hardwood kraft pulp bleaching. Current World Environment 6: 201–206
  • Kersten P.J., Tien M., Kalyanaraman B., Kirk T.K. [1985]: The Ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. Journal of Biological Chemistry 260: 2609–2612
  • Kim H., Ralph J., Akiyama T. [2008]: Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6. BioEnergy Research 1: 56–66
  • Lachenal D., Fernandes J.C., Froment P. [1995]: Behaviour of residual lignin in kraft pulp during bleaching. Journal of Pulp and Paper Science 21:173–177
  • Lange H., Decina S., Crestini C. [2013]: Oxidative upgrade of lignin-Recent routes reviewed. European Polymer Journal 49:1151–1173
  • Lee H.W., Kim T.H., Park S.H., Jeon J.K., Suh D.J., Park Y.K. [2013]: Catalytic fast pyrolysis of lignin over mesoporous Y zeolite using Py-GC/MS. Journal of Nanoscience and Nanotechnology 13: 2640–2646
  • Louchouarn P., Amon R.M.W., Duan S., Pondell C., Seward S.M., White N. [2010]: Analysis of lignin-derived phenols in standard reference materials and ocean dissolved organic matter by gas chromatography/tandem mass spectrometry. Marine Chemistry 118: 85–97
  • Olmez-Hanci T., Arslan-Alaton I. [2013]: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chemical Engineering Journal 224: 10–16
  • Owen N.L., Thomas D.W. [1989]: Infrared studies of “hard” and “soft” woods. Applied Spectroscopy 43: 451–455
  • Pandey K.K. [1999]: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71: 1969–975
  • Pessala P., Schulz E., Kukkola J., Nakari T., Knuutinen J., Herve S., Paasivirta J. [2010]: Biological effects of high molecular weight lignin derivatives. Ecotoxicology and Environmental Safety 73: 1641–1645
  • Popescu C.M., Popescu M.C., Singurel G., Vasile C., Argyropoulos D.S., Willfor S. [2007]: Spectral characterization of Eucalyptus wood. Applied Spectroscopy 61: 1168–1177
  • Pranovich A.V., Reunanen M., Sjöholm R., Holmbom B. [2005] Dissolved lignin and other substances in thermomechanical pulp waters. Wood Chemistry and Technology 25: 109–132
  • Puro L. [2011]: Identification of Extractives and Polysaccharides as Foulants in Membrane Filtration of Pulp and Paper Mill Effluents. Lappeenranta University of Technology, Lappeenranta, Finland
  • Ralph J., Landucci L.L. [2010]: NMR of lignins. In: Heitner C., Dimmel D.R., Schmidt J.A. [Eds.], Lignin and Lignans: Advances in Chemistry. CRC Press, NewYork, pp. 138–244
  • Ralph S.A., Ralph J., Landucci L.L. [2006]: NMR database of lignin and cell wall model compounds. http://www.arc.usda.gov/software.html
  • Rana R., Langenfeld-Heyser R., Finkeldey R., Polle A. [2010]: FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology 44: 225–242
  • Rencoret J., Marques G., Gutiérrez A., Nieto L., Santos J.I., Jiménez-Barbero J., Martínez Á.T., del Río J.C. [2009]: HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 63: 691–698
  • Soldán M., Sirotiak M., Michalikova A. [2013]: Catalytic ozonization of phenol with the use of alternative catalysts. Advanced Materials Research 781–784: 207–210
  • Silverstein R.M., Bassler G.C., Morrill T.C. [1991]: Spectrometric Identification of Organic Compounds. John Wiley & Sons, Singapore
  • Sixta H. [2006] Handbook of Pulp. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Sponza D. [2003]: Application of toxicity tests into discharges of the pulp-paper industry in Turkey. Ecotoxicology and Environmental Safety 54: 74–86
  • Suess H.U. [2010]: Pulp Bleaching Today. Walter de Gruyter, Berlin, Germany
  • Tarkpea M., Eklund B., Linde M., Bengtsson B-E. [1999]: Toxicity of conventional, elemental chlorine-free, and totally chlorine-free kraft-pulp bleaching effluents assessed by short-term lethal and sublethal bioassays. Environmental Toxicology and Chemistry 18: 2487–2496
  • Tobimatsu Y., Chen F., Nakashima J., Escamilla-Treviño L.L., Jackson L., Dixon R.A., Ralph J. [2013]: Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 25: 2587–600
  • Wang H., Tucker M., Ji Y. [2013]: Recent development in chemical depolymerization of lignin: A review. Journal of Applied Chemistry 1: 1–9
  • Wen J.-L., Sun S.-L., Xue B.-L., Sun R.-C. [2013]: Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance [NMR] methodology. Materials 6: 359–391
  • Wong D.W.S. [2009]: Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology 157: 174–209
  • Wu G., Heitz M. [1995]: Catalytic mechanism of Cu2+ and Fe3+ in alkaline O2 oxidation of lignin. Journal of Wood Chemistry and Technology 15: 189–202
  • Yang S.Y., Chen Y.Y., Xu H.Z., Wang P., Liu Y.H., Wang M.D. [2008]: A novel advanced oxidation technology based on activated persulfate. Progress in Chemistry 20:1433–1438 [in Chinese]
  • Zhang X., Rong Y., Chen T., Ni S., Wang G., Yu L. [2013]: Copper-catalyzed allylic oxidation of cyclohexene with molecular oxygen. Scientific Journal of Frontier Chemical Development 3: 25–29
  • Zhao Z.Q., Ouyang X.P. [2012]: Effect of oxidation on the structures and properties of lignin. Advanced Materials Research 550–553: 1208–1213

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2be9822e-a2fd-4bda-8e1a-a8256cd6046a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.