PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 23 | 4 |

Tytuł artykułu

Numerical prediction of wave patterns due to motion of 3D bodies by Kelvin-Havelock sources

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper discusses the numerical evaluation of the hydrodynamic characteristics of submerged and surface piercing moving bodies. Generally, two main classes of potential methods are used for hydrodynamic characteristic analysis of steady moving bodies which are Rankine and Kelvin-Havelock singularity distribution. In this paper, the KelvinHavelock sources are used for simulating the moving bodies and then free surface wave patterns are obtained. Numerical evaluation of potential distribution of a Kelvin-Havelock source is completely presented and discussed. Numerical results are calculated and presented for a 2D cylinder, single source, two parallel moving source, sphere, ellipsoid and standard Wigley hull in different situation that show acceptable agreement with results of other literatures or experiments

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

4

Opis fizyczny

p.46-58,fig.,ref.

Twórcy

autor
  • Faculty of Maritime Engineering, Amirkabir University of Technology, Hafez Ave., Tehran, Iran
autor
  • Faculty of Maritime Engineering, Amirkabir University of Technology, Hafez Ave., Tehran, Iran
  • Department of Marine, Technology Norwegian University of Science and Technology (NTNU), Trondheim, Norway
autor
  • Faculty of Maritime Engineering, Amirkabir University of Technology, Hafez Ave., Tehran, Iran

Bibliografia

  • 1. Andrew, R. N., Baar, J. J. M. and Price, W.G. “Prediction of ship wave-making resistance and other steady flow parameters using Neumann-Kelvin theory”, Proc., Royal Institution of Naval Architects, 1987. 
  • 2. Newman, J. N., “Evaluation of the wave-resistance Green function, Part 1-the double integral”, Journal of Ship Research, 31(2), 1987a, pp.79–90.
  • 3. Newman, J. N., “Evaluation of the wave-resistance Green function, Part 2-the single integral on the centerplane”, Journal of Ship Research, 31(3), 1987b, pp.145–150.
  • 4. Chen, C. Y. and Noblesse, F., “Comparison between theoretical predictions of wave resistance and experimental data for the Wigley hull”. Journal of Ship Research, 27, 4, 1983, pp.215-226.
  • 5. Telste, J. G. and Noblesse, F., “The non-oscillatory nearfield in the Green function for steady flow about a ship”, Proceeding 17th Symposium of Naval Hydrodynamics, The Hague, 1988, 39–52.
  • 6. Hendrix, D. and Noblesse, F., “Recipes for computing the steady free surface flow due to a source distribution”, Journal of Ship Research, 36(4), 1992, pp.346–359.
  • 7. Bulgarelli, U. P., Lugni, C. and Landrini, M., “Numerical Modeling of Free Surface Flows in Ship Hydrodynamics”, International Journal for Numerical Methods in Fluids, 43, 2003, pp.465-481.
  • 8. Tulin, M. P., “Reminiscences and Reflections: Ship Waves, 1950-2000”. Journal of Ship Research, 49, 2005, pp.238- 246.
  • 9. Larrson, L. and Baba, E., “Ship Resistance and Flow Computations”. Advances in Marine Hydrodynamics, Computational Mechanics Publications, 1996; 1–76.
  • 10. Gatchell, S., Hafermann, D., Jensen, G., Marzi, J. and Vogt, M., “Wave resistance computations-a comparison of different approaches”, Proceedings of the 23rd Symposium on Naval Hydrodynamics, Val de Reuil, France, 2001.
  • 11. Baar, J. J. M. “A three-dimensional linear analysis of steady ship motion in deep water”. Ph.D. Dissertation, Brunel University, U.K., 1986.
  • 12. Baar, J. J. M. and Price, W.G. “Evaluation of the wavelike disturbance in the Kelvin wave source potential”, Journal of Ship Research., 32(1), 1988, pp44–53.
  • 13. Cao, Y., Schultz, W. W. and Beck, R. F. “Three-dimensional desingularized boundary integral methods for potential problems”, International Journal of Numerical Methods in Fluids, 12, 1991, pp785–803.
  • 14. Hsin, C. Y. and Chou, S. K., “Applications of a hybrid boundary element method to the analysis of free surface flow around lifting and non-lifting bodies”, Proceeding. of the 22nd Symposium on Naval Hydrodynamics, Washington D.C., U.S.A., 1998.
  • 15. Yasko, M., “Boundary element method for a hydrofoil near the free surface”. Engineering Analysis with Boundary Elements, 21, 1998, pp.191–194.
  • 16. Ghassemi, H., Kohansal, A. and Ghamari, I., (2009) “Nonlinear free surface flows due to the lifting and nonlifting moving bodies” May, 2009, Proceeding of the 16th International Conference of the ISME, Tehran, Iran.
  • 17. Ghassemi H. and Kohansal A. R., “Wave Generated by the NACA4412 Hydrofoil near Free Surface”, Journal of Applied Fluid Mechanics, Vol. 6, No. 1, pp. 1-6, 2013.
  • 18. Tuck, E., Scullen, D. and Lazauskas, L., “Wave patterns and minimum wave resistance for high-speed vessels” International 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, 2002.
  • 19. Parau, E., and Vanden-Broeck, J. M., “Nonlinear two- and three-dimensional free surface flows due to moving disturbances”, European Journal of Mechanics B/Fluids 21, 2002, pp.643–656.
  • 20. Uslu, Y. and Bal, S., “Numerical prediction of wave drag of 2-d and 3-d bodies under or on a free surface” Turkish Journal Engineering Environment Science, 32, 2008, pp.177-188.
  • 21. Javanmardi, M., Binns, J. R., Renilson, M.R. and Thomas, G., “The prediction of wave patterns at large distances from a moving body in a confined channel”, 18th Australasian Fluid Mechanics Conf. Launceston, Australia, December 2012.
  • 22. Sun, J., Lv, X., Liu, W., Ning, H. and Chen, X., “Research on a method of hull form design based on wave-making resistance optimization”, Polish Maritime Research, 19(3), 2012, pp16-25.
  • 23. Zakerdoost, H., Ghassemi H. and Ghiasi M., “Ship hull form optimization by evolutionary algorithm in order to diminish the drag”, Journal Marine Science Applied (2013) 12: 170-179.
  • 24. Ozdemir, Y. H., Cosgun, T., Dogrul, A. and Barlas, B. “A numerical application to predict the resistance and wave pattern of KRISO container ship”, Brodogradnja, 67(2), 2016.
  • 25. Paris, F. and Canas J., “Boundary element method: fundamental and applications”, Oxford University Press, 1997.
  • 26. Ghassemi, H. and Bakhtiari, M., “Boundary element method”, Amirkabir Universty of Technology Publication, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2bb9e47f-ed24-4b99-8c0d-60755edbfb67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.